Using Fractional Calculus in an Attempt at Modeling a High Frequency AC Exciter

  • Łukasz MajkaEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 559)


The paper is an attempt of an application of the fractional order derivative in modeling of power system elements.

The electrical part of the generating unit contains, first of all, the power generator equipped with an excitation system. Three other components may be identified, when the electromachine excitation system is considered. This type of excitation uses an AC electric machine as an exciting device.

The mathematical model of high frequency AC exciter with additional regulator, being one of three possible submodels of electromagnetic excitation system model, was chosen intentionally and used as a simulation platform. The presented model in its simplicity includes all elements that characterise far more advanced and extended models, for example power generators. It contains gain factors and time constants as well as saturation components. Another important factor is that this particular model operates only using positive signals developed by an additional regulator. The paper presents the method and exemplary results of parameter estimation of the fractional model of the high frequency AC exciter with an additional regulator. To preserve full reliability of the computations, true waveforms measured in a power plant were used as input and output signals of the model. The advantages of applying fractional order calculus were verified by comparing measured and computed model output waveforms. Both integer and fractional order models were used in computations.

The aspect of filtering the recorded measurement signals is also presented in the paper.


Power system Fractional order model High frequency ac exciting device Measurement Parameter estimation Fractional order derivative 


  1. 1.
    General Electric, Energy Management System – PSLF – GE Energy Consulting (2018).
  2. 2.
    Siemens, PSS®SINCAL All-in-one Simulation Software for the Analysis and Planning of Power Networks (2018).
  3. 3.
    Majka, Ł., Paszek, S.: Mathematical model parameter estimation of a generating unit operating in the Polish National Power System. Bull. Pol. Acad. Sci. Tech. Sci. 64(2), 409–416 (2016)Google Scholar
  4. 4.
    Prastyaningrum, I., Handhika, J.: Mathematically analysis to improve efficiency of simple AC generator in term of special relativity. In: AIP Conference Proceedings 2014, p. 020124-1:6. AIP Publishing (2018)Google Scholar
  5. 5.
    Lewandowski, M., Majka, Ł., Świetlicka, A.: Effective estimation of angular speed of synchronous generator based on stator voltage measurement. Int. J. Electr. Power Energy Syst. 100, 391–399 (2018)CrossRefGoogle Scholar
  6. 6.
    Singh, A.K., Pal, B.C.: Dynamic Estimation and Control of Power Systems, 1st edn. Academic Press, London (2018)Google Scholar
  7. 7.
    Paszek, S., Nocoń, A.: Optimisation and Polyoptimisation of Power System Stabilizer Parameters. LAP LAMBERT Academic Publishing, Saarbrücken (2014)zbMATHGoogle Scholar
  8. 8.
    Buła, D., Lewandowski, M.: Steady state simulation of a distributed power supplying system using a simple hybrid time-frequency model. Appl. Math. Comput. 319, 195–202 (2018)Google Scholar
  9. 9.
    Buła, D., Lewandowski, M.: Comparison of frequency domain and time domain model of a distributed power supplying system with active power filters (APFs). Appl. Math. Comput. 267, 771–779 (2015)zbMATHGoogle Scholar
  10. 10.
    IEEE Standard Definitions for Excitation Systems for Synchronous Machines. In: IEEE Std 421.1-2007 (Revision of IEEE Std 421.1-1986), pp. 1–33 (2007).
  11. 11.
    IEEE Guide for Identification, Testing, and Evaluation of the Dynamic Performance of Excitation Control Systems. In: IEEE Std 421.2-2014 (Revision of IEEE Std 421.2-1990), pp. 1–63 (2014).
  12. 12.
    IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. In: IEEE Std 421.5-2016 (Revision of IEEE Std 421.5-2005), pp. 1–207 (2016).
  13. 13.
    Feltes, J.W., Orero, S., Fardanesh, B., Uzunovic, E., Zelingher, S., Abi-Samra, N.: Deriving model parameters from field test measurements. IEEE Comput. Appl. Power 15(4), 30–36 (2002)CrossRefGoogle Scholar
  14. 14.
    Hannett, L.N., Feltes, J.W.: Testing and model validation for combined-cycle power plants. In: In: Conference Proceedings on IEEE Power Engineering Society Winter Meeting, vol. 3, pp. 664–670 (2001)Google Scholar
  15. 15.
    Majka, Ł., Paszek, S.: Algorithms for estimation of model parameters of excitation system of an electrical machine. Acta Tech. CSAV (Ces. Akad. Ved) 55(2), 179–194 (2010)Google Scholar
  16. 16.
    Paszek, S., Nocoń, A.: Parameter polyoptimization of PSS2A power system stabilizers operating in a multi-machine power system including the uncertainty of model parameters. Appl. Math. Comput. 267, 750–757 (2015)zbMATHGoogle Scholar
  17. 17.
    Sierociuk, D., Malesza, W.: Fractional variable order anti-windup control strategy. Bull. Pol. Acad. Sci.: Tech. Sci. 66(4), 427–432 (2018)Google Scholar
  18. 18.
    Domansky, O., Sotner, R., Langhammer, L., Jerabek, J., Psychalinos, C., Tsirimokou, G.: Practical design of RC approximants of constant phase elements and their implementation in fractional-order PID regulators using CMOS voltage differencing current conveyors. In: Circuits, Systems, and Signal Processing, pp. 1–27. Springer, Heidelberg (2018). Scholar
  19. 19.
    Spałek, D.: Model generatora synchronicznego z ułamkowym regulatorem napiȩcia PIbDa. In: Conference Aktualne problemy w elektroenergetyce APE 2015, pp. 51–59 (2015)Google Scholar
  20. 20.
    Sowa, M.: A harmonic balance methodology for circuits with fractional and nonlinear elements. Circ. Syst. Sig. Process. 37(11), 4695–4727 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Czuczwara, W., Latawiec, K.J., Stanislawski, R., Łukaniszyn, M., Kopka, R., Rydel, M.: Modeling of a supercapacitor charging circuit using two equivalent RC circuits and forward vs. backward fractional-order differences. In: Progress in Applied Electrical Engineering (PAEE) (2018).
  22. 22.
    Kapouleaa, S., Psychalinos, C., Elwakil, A.S.: Single active element implementation of fractional-order differentiators and integrators. AEU-Int. J. Electron. Commun. 97, 6–15 (2018)CrossRefGoogle Scholar
  23. 23.
    Jakubowska-Ciszek, A., Walczak, J.: Analysis of the transient state in a parallel circuit of the class RLbCa. Appl. Math. Comput. 319, 287–300 (2018)Google Scholar
  24. 24.
    Jakubowska, A., Walczak, J.: Analysis of the transient state in a series circuit of the class RLbCa. Circ. Syst. Sig. Process. Spec. Issue: Fract.-Order Circ. Syst.: Theory Des. Appl. 35(6), 1831–1853 (2016)zbMATHGoogle Scholar
  25. 25.
    Carvalho, A.R., Pinto, C.M., Baleanu, D.: HIV/HCV coinfection model: a fractional-order perspective for the effect of the HIV viral load. AAdv. Differ. Equ. 2018, 2 (2018).
  26. 26.
    Baranowski, J., Pia̧tek, P., Kawala-Janik, A., Zagórowska, M., Bauer, W., Dziwiński, T.: Non-integer order filtration of electromyographic signals. In: Latawiec, K., Łukaniszyn, M., Stanisławski, R. (eds.) Advances in Modelling and Control of Non-integer-Order Systems. Lecture Notes in Electrical Engineering, vol. 320, pp. 231–237. Springer, Cham (2015)Google Scholar
  27. 27.
    Kawala-Janik, A., et al.: Implementation of low-pass fractional filtering for the purpose of analysis of electroencephalographic signals. In: Ostalczyk, P., Sankowski, D., Nowakowski, J. (eds.) Non-integer Order Calculus and its Applications. RRNR 2017. Lecture Notes in Electrical Engineering, vol. 496, pp. 63–73. Springer, Cham (2019)Google Scholar
  28. 28.
    Voyiadjis, G.Z., Sumelka, W.: Brain modelling in the framework of anisotropic hyperelasticity with time fractional damage evolution governed by the Caputo-Almeida fractional derivative. J. Mech. Behav. Biomed. Mater. 89, 209–216 (2019)CrossRefGoogle Scholar
  29. 29.
    Bia, P., Mescia, L., Caratelli, D.: Fractional calculus-based modeling of electromagnetic field propagation in arbitrary biological tissue. Math. Probl. Eng. 2016, 11 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Oprzȩdkiewicz, K., Mitkowski, W., Gawin, E., Dziedzic, K.: The Caputo vs. Caputo-Fabrizio operators in modeling of heat transfer process. Bull. Pol. Acad. Sci. Tech. Sci. 66(4), 501–507 (2018)Google Scholar
  31. 31.
    Lewandowski, M., Walczak, J.: Optimal base frequency estimation of an electrical signal based on Prony’s estimator and a FIR filter. Appl. Math. Comput. 319, 551–561 (2018)Google Scholar
  32. 32.
    Lewandowski, M., Walczak, J.: Current spectrum estimation using Prony’s estimator and coherent resampling. COMPEL 33(3), 989–997 (2014)CrossRefGoogle Scholar
  33. 33.
    Wróbel, T.: Pra̧dnice zwiȩkszonej czȩstotliwości. Wydawnictwo Ministerstwa Obrony Narodowej, Poland, Warsaw (1972)Google Scholar
  34. 34.
    Walker, J.H.: High frequency alternators. J. Inst. Electr. Eng. London 31, 67–80 (1946)Google Scholar
  35. 35.
    Li, P., Chen, L., Wu, R., Tenreiro Machado, J.A., Lopes, A.M., Yuan, L.: Robust asymptotic stability of interval fractional-order nonlinear systems with time-delay. J. Frankl. Inst. 355(15), 7749–7763 (2018)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Dassios, I.K., Baleanu, D.I.: Caputo and related fractional derivatives in singular systems. Appl. Math. Comput. 337, 591–606 (2018)MathSciNetGoogle Scholar
  37. 37.
    Brociek, R., Słota, D., Wituła, R.: Reconstruction of the thermal conductivity coefficient in the time fractional diffusion equation. In: Latawiec, K., Łukaniszyn, M., Stanisławski, R. (eds.) Advances in Modelling and Control of Non-integer-Order Systems. Lecture Notes in Electrical Engineering, vl. 320, pp. 239–247. Springer, Cham (2015)Google Scholar
  38. 38.
  39. 39.
    Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. Proc. IEEE 69(5), 529–541 (1981). Scholar
  40. 40.
  41. 41.
    Sowa, M., Kawala-Janik, A., Bauer, W.: Fractional differential equation solvers in octave/Matlab. In: 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR) (2018)Google Scholar
  42. 42.
    Garrappa, R.: Numerical solution of fractional differential equations: a survey and a software tutorial. Mathematics 6, 16 (2018)CrossRefGoogle Scholar
  43. 43.
    Sowa, M.: Application of a SubIval numerical solver for fractional circuits. In: Proceedings of the 20th International Research Conference, New York, USA, 27–28 August 2018, pp. 2560–2564 (2018)Google Scholar
  44. 44.
    Sowa, M.: A local truncation error estimation for a SubIval solver. Bull. Pol. Acad. Sci.: Tech. Sci. 66(4), 475–484 (2018)Google Scholar
  45. 45.
    Sowa, M.: Application of SubIval in solving initial value problems with fractional derivatives. Appl. Math. Comput. 319, 86–103 (2018)MathSciNetGoogle Scholar
  46. 46.
    Sowa, M.: Application of SubIval, a method for fractional-order derivative computations in IVPs. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds.) Theory and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol. 407, pp. 489–499. Springer, Cham (2017)Google Scholar
  47. 47.
    Sowa, M.: Solutions of circuits with fractional, nonlinear elements by means of a SubIval solver. In: Ostalczyk, P., Sankowski, D., Nowakowski, J. (eds.) Non-integer Order Calculus and its Applications. Lecture Notes in Electrical Engineering, vol. 496, pp. 217–228. Springer, Cham (2019)Google Scholar
  48. 48.
    Sowa, M.: A subinterval-based method for circuits with fractional order elements. Bull. Pol. Acad. Sci. Tech. Sci. 62(3), 449–454 (2014)MathSciNetGoogle Scholar
  49. 49.
  50. 50.
  51. 51.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer, Heidelberg (2006)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Silesian University of TechnologyGliwicePoland

Personalised recommendations