Advertisement

Time-Fractional Heat Conduction with Heat Absorption in a Half-Line Domain Due to Boundary Value of the Heat Flux Varying Harmonically in Time

  • Yuriy PovstenkoEmail author
  • Tamara Kyrylych
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 559)

Abstract

The time-fractional heat conduction equation with heat absorption is considered in a half-line domain under the mathematical and physical Neumann boundary conditions varying harmonically in time. The Caputo derivative is employed. The Laplace transform with respect to time and the cos-Fourier transform with respect to the spatial coordinate are used. The solutions are obtained in terms of integrals with integrands being the Mittag-Leffler functions. The numerical results are illustrated graphically.

Keywords

Fractional calculus Caputo derivative Harmonic impact Mittag-Leffler function 

References

  1. 1.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1972)zbMATHGoogle Scholar
  2. 2.
    Abuteen, E., Freihat, A., Al-Smadi, M., Khalil, H., Khan, R.A.: Approximate series solution of nonlinear, fractional Klein-Gordon equations using fractional reduced differential transform method. J. Math. Stat. 12, 23–33 (2016).  https://doi.org/10.3844/jmssp.2016.23.33CrossRefGoogle Scholar
  3. 3.
    Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Oxford University Press, Oxford (1959)zbMATHGoogle Scholar
  4. 4.
    Cui, Z., Chen, G., Zhang, R.: Analytical solution for the time-fractional Pennes bioheat transfer equation on skin tissue. Adv. Mater. Res. 1049–1050, 1471–1474 (2014).  https://doi.org/10.4028/www.scientific.net/AMR.1049-1050.1471CrossRefGoogle Scholar
  5. 5.
    Crank, J.: The Mathematics of Diffusion, 2nd edn. Clarendon Press, Oxford (1975)zbMATHGoogle Scholar
  6. 6.
    Damor, R.S., Kumar, S., Shukla, A.K.: Solution of fractional bioheat equation in terms of Fox’s H-function. SpringerPlus 111, 1–10 (2016).  https://doi.org/10.1186/s40064-016-1743-2CrossRefGoogle Scholar
  7. 7.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Tables of Integral Transforms, vol. 1. McGraw-Hill, New York (1954)zbMATHGoogle Scholar
  8. 8.
    Ezzat, M.A., AlSowayan, N.S., Al-Muhiameed, Z.I.A., Ezzat, S.M.: Fractional modeling of Pennes’ bioheat transfer equation. Heat Mass Transf. 50, 907–914 (2014).  https://doi.org/10.1007/s00231-014-1300-xCrossRefGoogle Scholar
  9. 9.
    Ferrás, L.L., Ford, N.J., Morgado, M.L., Nóbrega, J.M., Rebelo, M.S.: Fractional Pennes’ bioheat equation: theoretical and numerical studies. Fract. Calc. Appl. Anal. 18, 1080–1106 (2015).  https://doi.org/10.1515/fca-2015-0062MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gabbiani, F., Cox, S.J.: Mathematics for Neuroscientists, 2nd edn. Academic Press, Amsterdam (2017)zbMATHGoogle Scholar
  11. 11.
    Gafiychuk, V.V., Lubashevsky, I.A., Datsko, B.Y.: Fast heat propagation in living tissue caused by branching artery network. Phys. Rev. E 72, 051920 (2005).  https://doi.org/10.1103/PhysRevE.72.051920CrossRefGoogle Scholar
  12. 12.
    Golmankhaneh, A.K., Golmankhaneh, A.K., Baleanu, D.: On nolinear fractional Klein-Gordon equation. Sig. Process. 91, 446–451 (2011).  https://doi.org/10.1016/j.sigpro.2010.04.016CrossRefzbMATHGoogle Scholar
  13. 13.
    Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. International Centre for Mechanical Sciences (Courses and Lectures), vol. 378, pp. 223–276. Springer, Wien (1997).  https://doi.org/10.1007/978-3-7091-2664-6_5CrossRefGoogle Scholar
  14. 14.
    Gravel, P., Gauthier, C.: Classical applications of the Klein-Gordon equation. Am. J. Phys. 79, 447–453 (2011).  https://doi.org/10.1119/1.3559500CrossRefGoogle Scholar
  15. 15.
    Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Rational Mech. Anal. 31, 113–126 (1968).  https://doi.org/10.1007/BF00281373MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Holmes, W.R.: Cable equation. In: Jaeger, D., Jung, R. (eds.) Encyclopedia of Computational Neuroscience, pp. 471–482. Springer, New York (2015).  https://doi.org/10.1007/978-1-4614-6675-8
  17. 17.
    Kheiri, H., Shahi, S., Mojaver, A.: Analytical solutions for the fractional Klein-Gordon equation. Comput. Meth. Diff. Equat. 2, 99–114 (2014)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  19. 19.
    Liu, J., Xu, L.X.: Estimation of blood perfusion using phase shift in temperature response to sinusoidal heating the skin surface. IEEE Trans. Biomed. Eng. 46, 1037–1043 (1999).  https://doi.org/10.1109/10.784134CrossRefGoogle Scholar
  20. 20.
    Liu, J., Zhou, Y.X., Deng, Z.S.: Sinusoidal heating method to noninvasively measure tissue perfusion. IEEE Trans. Biomed. Eng. 49, 867–877 (2002).  https://doi.org/10.1109/TBME.2002.800769CrossRefGoogle Scholar
  21. 21.
    Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9, 23–28 (1996).  https://doi.org/10.1016/0893-9659(96)00089-4MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7, 1461–1477 (1996).  https://doi.org/10.1016/0960-0779(95)00125-5MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mandelis, A.: Diffusion waves and their uses. Phys. Today 53, 29–33 (2000).  https://doi.org/10.1063/1.1310118CrossRefGoogle Scholar
  24. 24.
    Mandelis, A.: Diffusion-Wave Fields: Mathematical Methods and Green Functions. Springer, New York (2001)CrossRefGoogle Scholar
  25. 25.
    Monai, H., Omori, T., Okada, M., Inoue, M., Miyakawa, H., Aonishi, T.: An analytic solution of the cable equation predicts frequency preference of a passive shunt-end cylindrical cable in response to extracellular oscillating electric fields. Biophys. J. 98, 524–533 (2010).  https://doi.org/10.1016/j.bpj.2009.10.041CrossRefGoogle Scholar
  26. 26.
    Nigmatullin, R.R.: To the theoretical explanation of the universal response. Phys. Stat. Sol. (b) 123, 739–745 (1984).  https://doi.org/10.1002/pssb.2221230241CrossRefGoogle Scholar
  27. 27.
    Nigmatullin, R.R.: On the theory of relaxation for systems with “remnant” memory. Phys. Stat. Sol. (b) 124, 389–393 (1984).  https://doi.org/10.1002/pssb.2221240142CrossRefGoogle Scholar
  28. 28.
    Nowacki, W.: State of stress in an elastic space due to a source of heat varying harmonically as function of time. Bull. Acad. Polon. Sci. Sér. Sci. Techn. 5, 145–154 (1957)Google Scholar
  29. 29.
    Nowacki, W.: Thermoelasticity, 2nd edn. PWN-Polish Scientific Publishers, Warsaw and Pergamon Press (1986)zbMATHGoogle Scholar
  30. 30.
    Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1, 93–122 (1948).  https://doi.org/10.1152/jappl.1948.1.2.93CrossRefGoogle Scholar
  31. 31.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  32. 32.
    Polyanin, A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman & Hall/CRC, Boca Raton (2002)zbMATHGoogle Scholar
  33. 33.
    Povstenko, Y.: Fractional heat conduction equation and associated thermal stress. J. Thermal Stresses 28, 83–102 (2005).  https://doi.org/10.1080/014957390523741MathSciNetCrossRefGoogle Scholar
  34. 34.
    Povstenko, Y.: Thermoelasticity that uses fractional heat conduction equation. J. Math. Sci. 162, 296–305 (2009).  https://doi.org/10.1007/s10958-009-9636-3MathSciNetCrossRefGoogle Scholar
  35. 35.
    Povstenko, Y.: Theory of thermoelasticity based on the space-time-fractional heat conduction equation. Phys. Scr. T 136, 014017 (2009).  https://doi.org/10.1088/0031-8949/2009/T136/014017CrossRefGoogle Scholar
  36. 36.
    Povstenko, Y.: Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder. Fract. Calc. Appl. Anal. 14, 418–435 (2011).  https://doi.org/10.2478/s13540-011-0026-4MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Povstenko, Y.: Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. Birkhäuser, New York (2015)CrossRefGoogle Scholar
  38. 38.
    Povstenko, Y.: Fractional heat conduction in a space with a source varying harmonically in time and associated thermal stresses. J. Thermal Stresses 39, 1442–1450 (2016).  https://doi.org/10.1080/01495739.2016.1209991CrossRefGoogle Scholar
  39. 39.
    Povstenko, Y., Kyrylych, T.: Time-fractional diffusion with mass absorption under harmonic impact. Fract. Calc. Appl. Anal. 21, 118–133 (2018).  https://doi.org/10.1515/fca-2018-0008MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Povstenko, Y., Kyrylych, T.: Time-fractional diffusion with mass absorption in a half-line domain due to boundary value of concentration varying harmonically in time. Entropy 20, 346 (2018).  https://doi.org/10.3390/e20050346MathSciNetCrossRefGoogle Scholar
  41. 41.
    Qin, Y., Wu, K.: Numerical solution of fractional bioheat equation by quadratic spline collocation method. J. Nonlinear Sci. Appl. 9, 5061–5072 (2016).  https://doi.org/10.22436/jnsa.009.07.09MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Shih, T.-C., Yuan, P., Lin, W.-L., Koe, H.S.: Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface. Med. Eng. Phys. 29, 946–953 (2007)CrossRefGoogle Scholar
  43. 43.
    Vitali, S., Castellani, G., Mainardi, F.: Time fractional cable equation and applications in neurophysiology. Chaos Solitons Fractals 102, 467–472 (2017).  https://doi.org/10.1016/j.chaos.2017.04.043MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Vrentas, J.S., Vrentas, C.M.: Diffusion and Mass Transfer. CRC Press, Boca Raton (2013)zbMATHGoogle Scholar
  45. 45.
    Wazwaz, A.-M.: Partial Differential Equations and Solitary Waves Theory. Higher Education Press, Springer, Beijing, Berlin (2009)CrossRefGoogle Scholar
  46. 46.
    Zolfaghari, A., Maerefat, M.: Bioheat transfer. In: dos Santos Bernardes, M.A. (ed.) Developments in Heat Transfer, pp. 153–170. InTech (2011).  https://doi.org/10.5772/22616Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Mathematics and Computer ScienceJan Dlugosz University in CzestochowaCzestochowaPoland
  2. 2.Institute of Law, Administration and ManagementJan Dlugosz University in CzestochowaCzestochowaPoland

Personalised recommendations