Advertisement

Frequency Method for Determining the Equivalent Parameters of Fractional-Order Elements L\(_{\beta }\)C\(_{\alpha }\)

  • Agnieszka Jakubowska-CiszekEmail author
  • Janusz Walczak
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 559)

Abstract

The paper proposes a method for the determination of parameters of the fractional-order elements, i.e. the supercapacitor and the fractional-order coil. The method is based on the phase resonance phenomenon in a series circuit containing the fractional-order element L\(_{\beta }, \)(C\(_{\alpha }\)) and the classic reactance element - capacitor C, or induction coil L. In the case of determining the parameters of the fractional-order coil L\(_{\beta }\), the two resonance frequencies have to be measured, in the circuit containing this coil and two switchable classic capacitors C\(_{1}\), C\(_{2}\). Similarly, when calculating the supercapacitor parameters, two resonance frequencies also need to be measured in a circuit containing a supercapacitor and two switchable reference inductances L\(_{1}\), L\(_{2}\). The developed method allows the determination of the lossy parameters of the fractional-order elements too. The paper presents a detailed description of the developed method, its physical basis, simulation and experimental verification.

Keywords

Fractional-order elements Supercapacitor Fractional-order parameters identification 

References

  1. 1.
    Barsali, S., Ceraolo, M.: Frequency dependent parameter model of supercapacitors. Measurement 43, 1683–1689 (2010)CrossRefGoogle Scholar
  2. 2.
    Cuadras, A., Ovejas, V.A.: Supercapacitor impedance in time and frequency domains. In: Proceedings of 9th International Multi-conference on Systems, Signals and Devices, pp. 1–6 (2012)Google Scholar
  3. 3.
    Dzielinski, A., Sierociuk, D., Sarwas, G.: Ultracapacitor parameters identification based on fractional-order model. In: Proceedings of European Control Conference on ECC 2009, Budapest, pp. 196–200 (2009)Google Scholar
  4. 4.
    Efe, M.O.: Fractional order systems in industrial automation—a survey. IEEE Trans. Ind. Inform. 7(4), 582–591 (2011)CrossRefGoogle Scholar
  5. 5.
    Freeborn, T.J., Maundy, B.J., Elwakil, A.S.: Accurate time domain extraction of supercapacitor fractional-order model parameters. In: IEEE International Symposium on Circuits and Systems ISCAS 2013, pp. 2259–2262 (2013)Google Scholar
  6. 6.
    Freeborn, T.J., Maundy, B., Elwakil, A.S.: Fractional-order models of supercapacitors, batteries and fuel cells: a survey. Mater. Renew. Sustain. Energy 4(3), 1–7 (2015)CrossRefGoogle Scholar
  7. 7.
    Freeborn, T.J., Maundy, B., Elwakil, A.S.: Measurement of supercapacitor fractional-order model parameters from voltage-excited step response. IEEE J. Emerg. Sel. Top. Circ. Syst. 3(3), 367–376 (2013)CrossRefGoogle Scholar
  8. 8.
    Jakubowska, A., Walczak, J.: Analysis of the transient state in a series circuit of the class RL\(_{\beta }\)C\(_{\alpha }\). Circ. Syst. Sig. Process. Spec. Issue: Fractional-Order Circ. Syst. Theory Des. Appl. 35(6), 1831–1853 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jakubowska-Ciszek, A., Walczak, J.: Analysis of the transient state in a parallel circuit of the class RL\(_{\beta }\)C\(_{\alpha }\). Appl. Math. Comput. 319, 287–300 (2018)Google Scholar
  10. 10.
    Jakubowska-Ciszek, A., Walczak, J.: The method of determining the parameters of the fractional-order models for fractional-order coils and supercapacitors and the system for implementing the method. Patent Application No. 426049, Patent Office of the Republic of Poland (2018)Google Scholar
  11. 11.
    Khaligh, A., Zhihao, L.: Battery, ultracapacitor, fuel cell and hybrid energy storage systems for electric, hybrid electric, fuel cell and plug-in hybrid electric vehicles, state of the art. IEEE Trans. Veh. Technol. 59(6), 2806–2814 (2010)CrossRefGoogle Scholar
  12. 12.
    Lewandowski, M., Orzyłowski, A.: Fractional-order models: the case study of the supercapacitor capacitance measurement. Bull. Pol. Acad. Sci. Tech. Sci. 65(4), 449–457 (2017)Google Scholar
  13. 13.
    Magin, R.L.: Fractional calculus in bioengineering: a tool to model complex dynamics. In: IEEE 13-th Carpathian Control Conference (ICCC), pp. 464–469 (2012)Google Scholar
  14. 14.
    Majka, L.: Applying a fractional coil model for power system ferroresonance analysis. Bull. Pol. Acad. Sci. Tech. Sci. 66(4), 467–474 (2018)Google Scholar
  15. 15.
    Majka, L.: Fractional derivative approach in modeling of a nonlinear coil for a ferroresonance analyses. In: Non-integer Order Calculus and Its Applications (2017).  https://doi.org/10.1007/978-3-319-78458-8_13Google Scholar
  16. 16.
    Martin, R.: Modeling electrochemical double layer capacitor, from classical to fractional impedance. In: The 14th Medditeranean Electrotechnical Conference, Ajaccio, pp. 61–66 (2008)Google Scholar
  17. 17.
    Maundy, B.J., Elwakil, A., Freeborn, T., Allagui, A.: Determination of supercapacitor metrics using a magnitude-only method. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1186–1189 (2016)Google Scholar
  18. 18.
    Maundy, B.J., Elwakil, A., Freeborn, T., Allagui, A.: Improved method to determine supercapacitor metrics from highpass filter response. In: 28th International Conference on Microelectronics (ICM), pp. 25–28 (2016)Google Scholar
  19. 19.
    Piotrowska, E., Rogowski, K.: Analysis of fractional electrical circuit using Caputo and conformable derivative definitions. In: Non-integer Order Calculus and Its Applications (2019, in press).  https://doi.org/10.1007/978-3-319-78458-8_16Google Scholar
  20. 20.
    Radwan, A.G., Fouda, M.E.: Optimization of fractional-order RLC filters. Circ. Syst. Sig. Process. 32, 2097–2118 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Radwan, A.G., Maundy, B.J., Elwakil, A.S.: Fractional-order oscillators. In: Oscillator Circuits: Frontiers in Design, Analysis and Applications, pp. 25–49 (2016)Google Scholar
  22. 22.
    Rosales, J.J., Guia, M., Gomez, F., Aguilar, F., Martinez, J.: Two dimensional fractional projectile motion in a resisting medium. Central Eur. J. Phys. 12(7), 517–520 (2014)Google Scholar
  23. 23.
    Schafer, J., Kruger, K.: Modelling of lossy coils using fractional derivatives. J. Phys. D: Appl. Phys. 41, 367–376 (2008)Google Scholar
  24. 24.
    Sierociuk, D., Sarwas, G., Twardy, M.: Resonance phenomena in circuits with ultracapacitors. In: Proceedings of International Conference on Environment and Electrical Engineering, EEEIC, pp. 197–202 (2013)Google Scholar
  25. 25.
    Soltan, A., Radwan, A.G., Soliman, A.M.: Fractional-order mutual inductance: analysis and design. Int. J. Circ. Theory Appl. 44(1), 85–97 (2015)CrossRefGoogle Scholar
  26. 26.
    Sowa, M.: A subinterval-based method for circuits with fractional order elements. Bull. Pol. Acad. Sci. Tech. Sci. 62(3), 449–454 (2014)MathSciNetGoogle Scholar
  27. 27.
    Sowa, M.: A harmonic balance methodology for circuits with fractional and nonlinear elements. Circ. Syst. Sig. Process. 37(11), 4695–4727 (2018).  https://doi.org/10.1007/s00034-018-0794-8MathSciNetCrossRefGoogle Scholar
  28. 28.
    Stankiewicz, A.: Fractional order RLC circuits. In: International Conference ELMECO and AoS, Naleczow, Poland, pp. 1–4 (2017)Google Scholar
  29. 29.
    Tripathy, M.C., Mondal, D., Biswak, K., Sen, S.: Experimental studies on realization of fractional inductors and fractional-order bandpass filters. Int. J. Circ. Theory Appl. 43, 1183–1196 (2015)CrossRefGoogle Scholar
  30. 30.
    Tsirimokou, G., Psychalinos, C., Elwakil, A.S.: Fractional-order electronically controlled generalized filters. Int. J. Circ. Theory Appl. 45(5), 595–612 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringSilesian University of TechnologyGliwicePoland

Personalised recommendations