Advertisement

Inaccuracies Revealed During the Analysis of Propagation of Measurement Uncertainty Through a Closed-Loop Fractional-Order Control System

  • Józef WioraEmail author
  • Alicja Wiora
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 559)

Abstract

The purpose of an automatic control is to provide the best quality of the output signal of a controlled object. This quality is dependent on the type and tuning parameters of the used controller and on the properties of a transducer measuring the output signal. In this work, it was considered how the imperfections of the transducer propagate by the fractional-order (FO) control system. It was revealed that the assumed approximation method of FO derivation changes the trajectory of the output signal and also has an influence on the steady-state value. In turn, the measurement uncertainty estimation should take into account the analysis of the occurrence of oscillations, arising from drifts of imperfect components, that may exceed the permissible errors of the measuring transducer.

Keywords

PID controller Steady-state error Oustaloup filter Uncertainty evaluation 

Notes

Acknowledgments

This work was funded by the Polish Ministry of Science and Higher Education (Grant No. 02/010/BK_18/0102).

References

  1. 1.
    Podlubny, I.: Fractional-order systems and PI\(^\lambda \)D\(^\mu \)-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999).  https://doi.org/10.1109/9.739144MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Podlubny, I.: Fractional-order systems and fractional-order controllers. Inst. Exp. Phys. Slovak Acad. Sci. Kosice 12(3), 1–18 (1994)Google Scholar
  3. 3.
    Dulău, M., Gligor, A., Dulău, T.M.: Fractional order controllers versus integer order controllers. Procedia Eng. 181, 538–545 (2017).  https://doi.org/10.1016/j.proeng.2017.02.431CrossRefGoogle Scholar
  4. 4.
    Tepljakov, A., Petlenkov, E., Belikov, J.: FOMCOM: a MATLAB toolbox for fractional-order system identification and control. Int. J. Microelectron. Comput. Sci. 2(2), 51–62 (2011)Google Scholar
  5. 5.
    Xue, D., Chen, Y., Atherton, D.P.: Linear Feedback Control: Analysis and Design with MATLAB. SIAM, Philadelphia (2007)CrossRefGoogle Scholar
  6. 6.
    Mozyrska, D., Ostalczyk, P., Wyrwas, M.: Stability conditions for fractional-order linear equations with delays. Bull. Pol. Acad. Sci. Tech. Sci. 66(4), 449–454 (2018).  https://doi.org/10.24425/124261CrossRefGoogle Scholar
  7. 7.
    Klamka, J., Czornik, A., Niezabitowski, M., Babiarz, A.: Controllability and minimum energy control of linear fractional discrete-time infinite-dimensional systems. In: 11th IEEE International Conference on Control and Automation (ICCA). IEEE (2014).  https://doi.org/10.1109/icca.2014.6871094
  8. 8.
    Krauze, P., Kasprzyk, J., Kozyra, A., Rzepecki, J.: Experimental analysis of vibration control algorithms applied for an off-road vehicle with magnetorheological dampers. J. Low Freq. Noise Vib. Act. Control 37(3), 619–639 (2018).  https://doi.org/10.1177/1461348418756018CrossRefGoogle Scholar
  9. 9.
    Morris, A.S.: Measurement and Instrumentation Principles. Butterworth-Heinemann, Oxford (2001)Google Scholar
  10. 10.
    Frank, R.: Understanding Smart Sensors. Artech House Books, London (2013)Google Scholar
  11. 11.
    ISO, Geneva, Switzerland: Uncertainty of measurement – Part 3: guide to the expression of uncertainty in measurement (GUM:1995) (2008). http://www.iso.org/iso/catalogue_detail.htm?csnumber=50461
  12. 12.
    Wiora, J., Wiora, A.: Measurement uncertainty evaluation of results provided by transducers working in control loops. In: 2018 23rd International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE (2018).  https://doi.org/10.1109/mmar.2018.8486028
  13. 13.
    Viola, J., Angel, L., Sebastian, J.M.: Design and robust performance evaluation of a fractional order PID controller applied to a DC motor. IEEE/CAA J. Autom. Sinica 4(2), 304–314 (2017).  https://doi.org/10.1109/JAS.2017.7510535MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chen, Y., Petras, I., Xue, D.: Fractional order control - a tutorial. In: 2009 American Control Conference. IEEE (2009).  https://doi.org/10.1109/acc.2009.5160719
  15. 15.
    Ionescu, C., Machado, J.T., Keyser, R.D.: Fractional-order impulse response of the respiratory system. Comput. Math. Appl. 62(3), 845–854 (2011).  https://doi.org/10.1016/j.camwa.2011.04.021. http://www.sciencedirect.com/science/article/pii/S0898122111003221. Special Issue on Advances in Fractional Differential Equations IICrossRefzbMATHGoogle Scholar
  16. 16.
    Baranowski, J., Bauer, W., Zagorowska, M., Dziwinski, T., Piatek, P.: Time-domain Oustaloup approximation. In: 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE (2015)  https://doi.org/10.1109/mmar.2015.7283857
  17. 17.
    Kawala-Janik, A., Zolubak, M., Bauer, W., Nazimek, B., Sobolewski, T., Martinek, R., Sowa, M., Pelc, M.: Implementation of non-integer order filtering for the purpose of disparities detection in beta frequencies - a pilot study. In: 2018 23rd International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE (2018)  https://doi.org/10.1109/mmar.2018.8486113
  18. 18.
    Merrikh-Bayat, F., Mirebrahimi, N., Khalili, M.R.: Discrete-time fractional-order PID controller: definition, tuning, digital realization and some applications. Int. J. Control Autom. Syst. 13(1), 81–90 (2014).  https://doi.org/10.1007/s12555-013-0335-yCrossRefGoogle Scholar
  19. 19.
    Teodorescu, R., Blaabjerg, F., Liserre, M., Loh, P.: Proportional-resonant controllers and filters for grid-connected voltage-source converters. IEE Proc. Electr. Power Appl. 153(5), 750 (2006).  https://doi.org/10.1049/ip-epa:20060008CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Automatic ControlSilesian University of TechnologyGliwicePoland

Personalised recommendations