Advertisement

Tightly Secure Hierarchical Identity-Based Encryption

  • Roman LangrehrEmail author
  • Jiaxin Pan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11442)

Abstract

We construct the first tightly secure hierarchical identity-based encryption (HIBE) scheme based on standard assumptions, which solves an open problem from Blazy, Kiltz, and Pan (CRYPTO 2014). At the core of our constructions is a novel randomization technique that enables us to randomize user secret keys for identities with flexible length.

The security reductions of previous HIBEs lose at least a factor of \( Q \), which is the number of user secret key queries. Different to that, the security loss of our schemes is only dependent on the security parameter. Our schemes are adaptively secure based on the Matrix Diffie-Hellman assumption, which is a generalization of standard Diffie-Hellman assumptions such as \(k\)-Linear. We have two tightly secure constructions, one with constant ciphertext size, and the other with tighter security at the cost of linear ciphertext size. Among other things, our schemes imply the first tightly secure identity-based signature scheme by a variant of the Naor transformation.

Keywords

Hierarchical identity-based encryption Tight security Affine message authentication codes 

References

  1. 1.
    Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63715-0_19CrossRefGoogle Scholar
  2. 2.
    Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 629–658. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46494-6_26CrossRefGoogle Scholar
  3. 3.
    Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_23CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_13CrossRefGoogle Scholar
  5. 5.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_13CrossRefGoogle Scholar
  6. 6.
    Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_20CrossRefGoogle Scholar
  7. 7.
    Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures via asymmetric pairings. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 122–140. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36334-4_8CrossRefGoogle Scholar
  8. 8.
    Chen, J., Wee, H.: Fully, (Almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_25CrossRefGoogle Scholar
  9. 9.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45325-3_32CrossRefGoogle Scholar
  10. 10.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_8CrossRefGoogle Scholar
  11. 11.
    Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 1–27. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49890-3_1CrossRefGoogle Scholar
  12. 12.
    Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_8CrossRefGoogle Scholar
  13. 13.
    Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006).  https://doi.org/10.1007/11761679_27CrossRefGoogle Scholar
  14. 14.
    Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36178-2_34CrossRefGoogle Scholar
  15. 15.
    Gong, J., Cao, Z., Tang, S., Chen, J.: Extended dual system group and shorter unbounded hierarchical identity based encryption. Des. Codes Crypt. 80(3), 525–559 (2016).  https://doi.org/10.1007/s10623-015-0117-zMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gong, J., Dong, X., Chen, J., Cao, Z.: Efficient IBE with tight reduction to standard assumption in the multi-challenge setting. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 624–654. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_21CrossRefGoogle Scholar
  17. 17.
    Hesse, J., Hofheinz, D., Kohl, L.: On tightly secure non-interactive key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 65–94. Springer, Heidelberg (Aug (2018)Google Scholar
  18. 18.
    Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_35CrossRefGoogle Scholar
  19. 19.
    Hofheinz, D., Jia, D., Pan, J.: Identity-based encryption tightly secure under chosen-ciphertext attacks. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 190–220. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03329-3_7CrossRefGoogle Scholar
  20. 20.
    Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74143-5_31CrossRefGoogle Scholar
  21. 21.
    Hofheinz, D., Koch, J., Striecks, C.: Identity-based encryption with (almost) tight security in the multi-instance, multi-ciphertext setting. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 799–822. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_36CrossRefGoogle Scholar
  22. 22.
    Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_31CrossRefGoogle Scholar
  23. 23.
    Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42033-7_1CrossRefGoogle Scholar
  24. 24.
    Kiltz, E., Neven, G.: Identity-based signatures. In: Joye, M., Neven, G. (eds.) Identity-Based Cryptography. IOS Press, Amsterdam (2009)zbMATHGoogle Scholar
  25. 25.
    Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assumptions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_14CrossRefGoogle Scholar
  26. 26.
    Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_4CrossRefGoogle Scholar
  27. 27.
    Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_20CrossRefzbMATHGoogle Scholar
  28. 28.
    Lewko, A., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_4CrossRefGoogle Scholar
  29. 29.
    Naor, M., Reingold, O.: On the construction of pseudo-random permutations: Luby-Rackoff revisited (extended abstract). In: 29th ACM STOC, pp. 189–199. ACM Press, May 1997Google Scholar
  30. 30.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS 2000, Okinawa, Japan, January 2000Google Scholar
  31. 31.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985).  https://doi.org/10.1007/3-540-39568-7_5CrossRefGoogle Scholar
  32. 32.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_36CrossRefGoogle Scholar
  33. 33.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_7CrossRefGoogle Scholar
  34. 34.
    Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_26CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations