Advertisement

Shorter Quadratic QA-NIZK Proofs

  • Vanesa DazaEmail author
  • Alonso González
  • Zaira Pindado
  • Carla Ràfols
  • Javier Silva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11442)

Abstract

Despite recent advances in the area of pairing-friendly Non-Interactive Zero-Knowledge proofs, there have not been many efficiency improvements in constructing arguments of satisfiability of quadratic (and larger degree) equations since the publication of the Groth-Sahai proof system (JoC’12). In this work, we address the problem of aggregating such proofs using techniques derived from the interactive setting and recent constructions of SNARKs. For certain types of quadratic equations, this problem was investigated before by González et al. (ASIACRYPT’15). Compared to their result, we reduce the proof size by approximately 50% and the common reference string from quadratic to linear, at the price of using less standard computational assumptions. A theoretical motivation for our work is to investigate how efficient NIZK proofs based on falsifiable assumptions can be. On the practical side, quadratic equations appear naturally in several cryptographic schemes like shuffle and range arguments.

References

  1. 1.
    Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_27CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bootle, J., Groth, J.: Efficient batch zero-knowledge arguments for low degree polynomials. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 561–588. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76581-5_19CrossRefGoogle Scholar
  4. 4.
    Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89255-7_15CrossRefGoogle Scholar
  5. 5.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503. ACM Press, May 2002Google Scholar
  6. 6.
    Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73420-8_38CrossRefGoogle Scholar
  7. 7.
    Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45611-8_28CrossRefGoogle Scholar
  8. 8.
    Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_36CrossRefGoogle Scholar
  9. 9.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_8CrossRefGoogle Scholar
  10. 10.
    Fauzi, P., Lipmaa, H., Siim, J., Zając, M.: An efficient pairing-based shuffle argument. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 97–127. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70697-9_4CrossRefGoogle Scholar
  11. 11.
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_37CrossRefGoogle Scholar
  12. 12.
    Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 99–108. ACM Press, June 2011Google Scholar
  13. 13.
    González, A.: A ring signature of size \({O}(\root 3 \of {n})\) without random oracles. Cryptology ePrint Archive, Report 2017/905 (2017). http://eprint.iacr.org/2017/905
  14. 14.
    González, A., Hevia, A., Ràfols, C.: QA-NIZK arguments in asymmetric groups: new tools and new constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 605–629. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_25CrossRefzbMATHGoogle Scholar
  15. 15.
    González, A., Ráfols, C.: New techniques for non-interactive shuffle and range arguments. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 427–444. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39555-5_23CrossRefzbMATHGoogle Scholar
  16. 16.
    Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17373-8_19CrossRefGoogle Scholar
  17. 17.
    Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_11CrossRefGoogle Scholar
  18. 18.
    Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76900-2_4CrossRefGoogle Scholar
  19. 19.
    Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-knowledge. J. ACM 59(3), 11 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_24CrossRefGoogle Scholar
  21. 21.
    Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups. SIAM J. Comput. 41(5), 1193–1232 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42033-7_1CrossRefGoogle Scholar
  23. 23.
    Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44381-1_17CrossRefGoogle Scholar
  24. 24.
    Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_4CrossRefGoogle Scholar
  25. 25.
    Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability: simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_29CrossRefGoogle Scholar
  26. 26.
    Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28914-9_10CrossRefGoogle Scholar
  27. 27.
    Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42033-7_3CrossRefGoogle Scholar
  28. 28.
    Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 729–758. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53887-6_27CrossRefGoogle Scholar
  29. 29.
    Naor, M.: On cryptographic assumptions and challenges (invited talk). In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_6CrossRefGoogle Scholar
  30. 30.
    Ràfols, C.: Stretching Groth-Sahai: NIZK proofs of partial satisfiability. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 247–276. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_10CrossRefzbMATHGoogle Scholar
  31. 31.
    Rial, A., Kohlweiss, M., Preneel, B.: Universally composable adaptive priced oblivious transfer. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 231–247. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03298-1_15CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  • Vanesa Daza
    • 1
    Email author
  • Alonso González
    • 2
  • Zaira Pindado
    • 1
  • Carla Ràfols
    • 1
  • Javier Silva
    • 1
  1. 1.Universitat Pompeu FabraBarcelonaSpain
  2. 2.ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL)LyonFrance

Personalised recommendations