Leveraging the Partial Reconfiguration Capability of FPGAs for Processor-Based Fail-Operational Systems

  • Tobias DörrEmail author
  • Timo Sandmann
  • Florian Schade
  • Falco K. Bapp
  • Jürgen Becker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11444)


Processor-based digital systems are increasingly being used in safety-critical environments. To meet the associated safety requirements, these systems are usually characterized by a certain degree of redundancy. This paper proposes a concept to introduce a redundant processor on demand by using the partial reconfiguration capability of modern FPGAs. We describe a possible implementation of this concept and evaluate it experimentally. The evaluation focuses on the fault handling latency and the resource utilization of the design. It shows that an implementation with 32 KiB of local processor memory handles faults within 0.82 ms and, when no fault is present, consumes less than 46% of the resources that a comparable static design occupies.


Fail-operational system Graceful degradation Partial reconfiguration Dynamic redundancy Simplex architecture Fallback processor Multiprocessor system-on-chip Soft-core processor 



This work was funded by the German Federal Ministry of Education and Research (BMBF) under grant number 01IS16025 (ARAMiS II). The responsibility for the content of this publication rests with the authors.


  1. 1.
    Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33 (2004). Scholar
  2. 2.
    Bak, S., Chivukula, D.K., Adekunle, O., Sun, M., Caccamo, M., Sha, L.: The system-level simplex architecture for improved real-time embedded system safety. In: 2009 15th IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 99–107, April 2009.
  3. 3.
    Baleani, M., Ferrari, A., Mangeruca, L., Sangiovanni-Vincentelli, A., Peri, M., Pezzini, S.: Fault-tolerant platforms for automotive safety-critical applications. In: Proceedings of the 2003 International Conference on Compilers, Architecture and Synthesis for Embedded Systems, CASES 2003, pp. 170–177. ACM, New York (2003).
  4. 4.
    Bapp, F.K., Dörr, T., Sandmann, T., Schade, F., Becker, J.: Towards fail-operational systems on controller level using heterogeneous multicore SoC architectures and hardware support. In: WCX World Congress Experience. SAE International, April 2018.
  5. 5.
    Bolchini, C., Miele, A., Santambrogio, M.D.: TMR and partial dynamic reconfiguration to mitigate SEU faults in FPGAs. In: 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007), pp. 87–95, September 2007.
  6. 6.
    Cheatham, J.A., Emmert, J.M., Baumgart, S.: A survey of fault tolerant methodologies for FPGAs. ACM Trans. Des. Autom. Electron. Syst. 11(2), 501–533 (2006). Scholar
  7. 7.
    Di Carlo, S., Prinetto, S., Trotta, P., Andersson, P.: A portable open-source controller for safe dynamic partial reconfiguration on Xilinx FPGAs. In: 2015 25th International Conference on Field Programmable Logic and Applications (FPL), pp. 1–4, September 2015.
  8. 8.
    Ellis, S.M.: Dynamic software reconfiguration for fault-tolerant real-time avionic systems. Microprocess. Microsyst. 21(1), 29–39 (1997)CrossRefGoogle Scholar
  9. 9.
    Emmert, J., Stroud, C., Skaggs, B., Abramovici, M.: Dynamic fault tolerance in FPGAs via partial reconfiguration. In: Proceedings 2000 IEEE Symposium on Field-Programmable Custom Computing Machines (Cat. No.PR00871), pp. 165–174, April 2000.
  10. 10.
    Isermann, R., Schwarz, R., Stölzl, S.: Fault-tolerant drive-by-wire systems. IEEE Control Syst. 22(5), 64–81 (2002)CrossRefGoogle Scholar
  11. 11.
    Kohn, A., Käßmeyer, M., Schneider, R., Roger, A., Stellwag, C., Herkersdorf, A.: Fail-operational in safety-related automotive multi-core systems. In: 10th IEEE International Symposium on Industrial Embedded Systems (SIES), pp. 1–4, June 2015.
  12. 12.
    Nelson, V.P.: Fault-tolerant computing: fundamental concepts. Computer 23(7), 19–25 (1990). Scholar
  13. 13.
    Papadimitriou, K., Dollas, A., Hauck, S.: Performance of partial reconfiguration in FPGA systems: a survey and a cost model. ACM Trans. Reconfigurable Technol. Syst. 4(4), 36:1–36:24 (2011). Scholar
  14. 14.
    Pham, H.M., Pillement, S., Piestrak, S.J.: Low-overhead fault-tolerance technique for a dynamically reconfigurable softcore processor. IEEE Trans. Comput. 62(6), 1179–1192 (2013). Scholar
  15. 15.
    Psarakis, M., Vavousis, A., Bolchini, C., Miele, A.: Design and implementation of a self-healing processor on SRAM-based FPGAs. In: 2014 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 165–170, October 2014.
  16. 16.
    Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001). Scholar
  17. 17.
    Shreejith, S., Vipin, K., Fahmy, S.A., Lukasiewycz, M.: An approach for redundancy in FlexRay networks using FPGA partial reconfiguration. In: 2013 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 721–724, March 2013.
  18. 18.
    Storey, N.R.: Safety-Critical Computer Systems. Addison-Wesley Longman Publishing Co., Inc., Boston (1996)Google Scholar
  19. 19.
    Vavousis, A., Apostolakis, A., Psarakis, M.: A fault tolerant approach for FPGA embedded processors based on runtime partial reconfiguration. J. Electron. Testing 29(6), 805–823 (2013). Scholar
  20. 20.
    Vipin, K., Fahmy, S.A.: FPGA dynamic and partial reconfiguration: a survey of architectures, methods, and applications. ACM Comput. Surv. 51(4), 72:1–72:39 (2018). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations