Advertisement

Overview on Robotic Training

  • Luiz Alfredo Vieira d’Almeida
  • Daniella Guimarães Cavalcanti Freitas
Chapter

Abstract

During the past recent years, there has been a significant increase in the use of robotic-assisted surgery in the world, probably because the robotic system helps to overcome the added challenges of performing these procedures in a minimally invasive fashion presumably and facilitates a more predictable and safer outcome. Upon comparison between open surgery and minimally invasive robotic approach, the benefits of the last are similar to those pertaining to laparoscopy: a recent study suggests that robotic-assisted surgery leads to a decreased length of stay and less possibility of death for 90% of patients, when compared to open surgery. Despite all of the perks pertaining robotic surgery, it has some major limitations, such as the steep learning curve related to the performance of robotic-assisted laparoscopic procedures. One potential solution for this matter is the use of virtual reality simulators, which have been shown by some studies to be able to decrease this learning curve, despite being criticized by other researchers. Up until now, there is not a standardized training method for robotic surgery, although the use of virtual reality simulation is of significant importance in these current methods. Therefore, the point of this review is to specify the current training method for robotic surgery, pointing out the reasons for the use of such methods, its benefits and limitations, and, finally, to determine if the current certification model is suitable.

Keywords

Simulator in robotic surgery Surgeons training in robotic surgery Certification in robotic surgery 

References

  1. 1.
    Wright JD, Ananth CV, Lewin SN. Robotically assisted vs. laparoscopic hysterectomy among women with benign gynecologic disease. JAMA. 2013;309(7):689–98.PubMedCrossRefGoogle Scholar
  2. 2.
    Culligan P, et al. Predictive validity of a training protocol using a robotic surgery simulator. Female Pelvic Med Reconstr Surg. 2014;20(1):48–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Oleynikov D. Robotic surgery. Surg Clin North Am. 2008;88:1121–30.PubMedCrossRefGoogle Scholar
  4. 4.
    Gomez PP, Willis RE, Van Sickle KR. Development of a virtual reality robotic surgical curriculum using the da Vinci Si surgical system. Surg Endosc. 2015;29(8):2171–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson E, Chang DC, Parsons JK, Talamini MA. The first national examination of outcomes and trends in robotic surgery in the United States. J Am Coll Surg. 2012;215(1):107–14.PubMedCrossRefGoogle Scholar
  6. 6.
    Connolly M, et al. Validation of a virtual reality-based robotic surgical skills curriculum. Surg Endosc. 2014;28(5):1691–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Ho C, Tsakonas E, Tran K, et al. Robot-assisted surgery compared with open surgery and laparoscopic surgery: clinical effectiveness and economic analyses. Ottawa: CADTH; 2011.Google Scholar
  8. 8.
    Tewari A, et al. Positive surgical margin and perioperative complication rates of primary surgical treatments for prostate cancer: a systematic review and meta-analysis comparing retropubic, laparoscopic, and robotic prostatectomy. Eur Urol. 2012;62:1–15.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Murphy DG, Bjartell A, Ficarra V, et al. Downsides of robot-assisted laparoscopic radical prostatectomy: limitations and complications. Eur Urol. 2010;57:735–46.PubMedCrossRefGoogle Scholar
  10. 10.
    Rajanbabu A, et al. Virtual reality surgical simulators – a prerequisite for robotic surgery. Indian J Surg Oncol. 2014;5(2):125–7.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bric J, et al. Proficiency training on a virtual reality robotic surgical skills curriculum. Surg Endosc. 2014;28(12):3343–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Cameron JL. William Stewart Halsted. Our surgical heritage. Ann Surg. 1997;225(5):445.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Whittaker G, et al. Validation of the robotiX mentor robotic surgery simulator. J Endourol. 2016;30(3):338–46.PubMedCrossRefGoogle Scholar
  14. 14.
    Kiely DJ, et al. Virtual reality robotic surgery simulation curriculum to teach robotic suturing: a randomized controlled trial. J Robot Surg. 2015;9(3):179–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Steinberg PL, Merguerian PA, Bihrle W III, et al. The cost of learning robotic-assisted prostatectomy. Urology. 2008;72:1068–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Amodeo A, et al. Robotic laparoscopic surgery: cost and training. Minerva Urol Nefrol. 2009;61(2):121–8.PubMedGoogle Scholar
  17. 17.
    Satava RM, Gallagher AG, Pellegrini CA. Surgical competence and surgical proficiency: definitions, taxonomy, and metrics. J Am Coll Surg. 2003;196:933–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Jonsson MN, Mahmood M, Askerud T, et al. ProMIS™ can serve as a da Vinci® simulator – a construct validity study. J Endourol. 2011;25(2):345–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Abboudi H, Khan MS, Aboumarzouk O, et al. Current status of validation for robotic surgery simulators – a systematic review. BJU Int. 2013;111(2):194–205.PubMedCrossRefGoogle Scholar
  20. 20.
    Lerner MA, Ayalew M, Peine WJ, Sundaram CP. Does training on a virtual reality robotic simulator improve performance on the da Vinci surgical system? J Endourol. 2010;24(3):467–72.PubMedCrossRefGoogle Scholar
  21. 21.
    Bric JD, Lumbard DC, Frelich MJ, Gould JC. Current state of virtual reality simulation in robotic surgery training: a review. Surg Endosc. 2016;30(6):2169–78.PubMedCrossRefGoogle Scholar
  22. 22.
    Callery MP, Strasberg SM, Soper NJ. Complications of laparoscopic general surgery. Gastrointest Endosc Clin N Am. 2006;6(2):423–44.CrossRefGoogle Scholar
  23. 23.
    Bruynzeel H, de Bruin AF, Bonjer HJ, Lange JF, et al. Desktop simulator: key to universal training? Surg Endosc. 2007;21(9):1637–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Van Dongen KW, Tournoij E, van der Zee DC, Schijven MP, et al. Construct validity of the LapSim: can the LapSim virtual reality simulator distinguish between novices and experts? Surg Endosc. 2007;21(8):1413–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Kroeze SGC, Mayer EK, Chopra S, Aggarwal R, et al. Assessment of laparoscopic suturing skills of urology residents: a pan-European study. Eur Urol. 2009;56(5):865–73.PubMedCrossRefGoogle Scholar
  26. 26.
    Perrenot C, Perez M, Tran N, Jehl JP, et al. The virtual reality simulator dV-Trainer(®) is a valid assessment tool for robotic surgical skills. Surg Endosc. 2012;26(9):2587–93.PubMedCrossRefGoogle Scholar
  27. 27.
    Ahlberg G, Enochsson L, Gallagher AG, et al. Proficiency- based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am J Surg. 2007;193:797–804.PubMedCrossRefGoogle Scholar
  28. 28.
    Gurusamy K, Aggarwal R, Palanivelu L, et al. Systematic review of randomized controlled trials on the effectiveness of virtual reality training for laparoscopic surgery. Br J Surg. 2008;95:1088–97.PubMedCrossRefGoogle Scholar
  29. 29.
    Balasundaram I, Aggarwal R, Darzi A. Short-phase training on a virtual reality simulator improves technical performance in telerobotic surgery. Int J Med Robot. 2008;4:139–45.PubMedCrossRefGoogle Scholar
  30. 30.
    Seymour NE, Gallagher AG, Roman SA, et al. Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg. 2002;236:458–63.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Raza SJ, Froghi S, Chowriappa A, Ahmed K, et al. Construct validation of the key components of fundamental skills of robotic surgery (FSRS) curriculum—a multi-institution prospective study. J Surg Educ. 2014;71:316–24.PubMedCrossRefGoogle Scholar
  32. 32.
    Chowriappa AJ, Shi Y, Raza SJ, Ahmed K, et al. Development and validation of a composite scoring system for robot-assisted surgical training—the Robotic Skills Assessment Score. J Surg Res. 2013;185:561–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Kenney P, Wszolek MF, Gould JJ, Libertino J, et al. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology. 2009;73:1288–92.PubMedCrossRefGoogle Scholar
  34. 34.
    Korets R, Mues AC, Graversen J, Gupta M, et al. Validating the use of the Mimic dV-trainer for robotic surgery skill acquisition among urology residents. Urology. 2011;78:1326–30.PubMedCrossRefGoogle Scholar
  35. 35.
    Lee JY, Mucksavage P, Kerbl DC, Huynh VB, et al. Validation study of a virtual reality robotic simulator- role as an assessment tool? J Urol. 2012;187:998–1002.PubMedCrossRefGoogle Scholar
  36. 36.
    Lendvay T, Casale P, Sweet R, Peters C. VR robotic surgery: randomized blinded study of the dV-trainer robotic simulator. Stud Health Technol Inform. 2008;132:242–4.PubMedGoogle Scholar
  37. 37.
    Liss M, Abdelshehid C, Quach S, Lusch A, et al. Validation, correlation, and comparison of the da Vinci trainer and the daVinci surgical skills simulator using the Mimic software for urologic robotic surgical education. J Endourol. 2012;26:1629–34.PubMedCrossRefGoogle Scholar
  38. 38.
    Alzahrani T, Haddad R, Alkhayal A, Delisle J, et al. Validation of the da Vinci surgical skill simulator across three surgical disciplines: a pilot study. Can Urol Assoc. 2013;7(7–8):E520–9.CrossRefGoogle Scholar
  39. 39.
    Finnegan KT, Meraney AM, Staff I, Shichman SJ. da Vinci skills simulator construct validation study: correlation of prior robotic experience with overall score and time score simulator performance. Urology. 2012;80:330–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Hung AJ, Jayaratna IS, Teruya K, Desai MM, et al. Comparative assessment of three standardized robotic surgery training methods. BJU Int. 2013;112(6):864–71.PubMedCrossRefGoogle Scholar
  41. 41.
    Hung AJ, Zehnder P, Patil MB, Cai J, et al. Face, content and construct validity of a novel robotic surgery simulator. J Urol. 2011;186:1019–25.PubMedCrossRefGoogle Scholar
  42. 42.
    Kelly DC, Margules AC, Kundavaram CR, Narins H, et al. Face, content, and construct validation of the da Vinci skills simulator. Urology. 2012;79:1068–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Lyons C, Goldfarb D, Jones SL, Badhiwala N, et al. Which skills really matter? Proving face, content, and construct validity for a commercial robotic simulator. Surg Endosc. 2013;27:2020–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Culligan P, Gurshumov E, Lewis C, Priestley J, et al. Predictive validity of a training protocol using a robotic surgery simulator. Female Pelvic Med Reconstr Surg. 2014;20:48–51.PubMedCrossRefGoogle Scholar
  45. 45.
    Gavazzi A, Bahsoun AN, Van Haute W, Ahmed K, et al. Face, content and construct validity of a virtual reality simulator for robotic surgery (SEP robot). Ann R Coll Surg Engl. 2011;93:152–6.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Shamim Khan M, Ahmed K, Gavazzi A, et al. Development and implementation of centralized simulation training: evaluation of feasibility, acceptability and construct validity. BJU Int. 2013;111:518–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Hung AJ, Patil MB, Zehnder P, Cai J, et al. Concurrent and predictive validation of a novel robotic surgery simulator: a prospective, randomized study. J Urol. 2012;187:630–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Tanaka A, Graddy C, Simpson K, Perez M, Truong M, Smith R. Robotic surgery simulation validity and usability comparative analysis. Surg Endosc. 2016;30(9):3720–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Vaccaro CM, Crisp CC, Fellner AN, Jackson C, et al. Robotic virtual reality simulation plus standard robotic orientation versus standard robotic orientation alone: a randomized controlled trial. Female Pelvic Med Reconstr Surg. 2013;19(5):266–70.PubMedCrossRefGoogle Scholar
  50. 50.
    Yates D, Vaessen C, Roupret M. From Leonardo to da Vinci: the history of robot-assisted surgery in urology. BJU Int. 2011;108:1708–14.CrossRefGoogle Scholar
  51. 51.
    Pellen MG, Horgan LF, Barton JR, Attwood SE. Construct validity of the ProMIS laparoscopic simulator. Surg Endosc. 2009;23:130–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Neary PC, Boyle E, Delaney CP, Senagore AJ, et al. Construct validation of a novel hybrid virtual-reality simulator for training and assessing laparoscopic colectomy; results from the first course for experienced senior laparoscopic surgeons. Surg Endosc. 2008;22:2301–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Feifer A, Al-Ammari A, Kovac E, Delisle J, et al. Randomized controlled trial of virtual reality and hybrid simulation for robotic surgical training. BJU Int. 2011;108:1652–6.PubMedCrossRefGoogle Scholar
  54. 54.
    McDougall EM. Validation of surgical simulators. J Endourol. 2007;21(3):244–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Foell K, Furse A, Honey RJ, Pace KT, et al. Multidisciplinary validation study of the da Vinci Skills Simulator: educational tool and assessment device. J Robot Surg. 2013;7(4):365–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Korets R, Graversen JA, Mues A, Gupta M, et al. Face and construct validity assessment of 2nd generation robotic surgery simulator. J Urol. 2011;185(Suppl):e488.Google Scholar
  57. 57.
    Korets R, Mues AC, Graversen J, Gupta M, et al. Comparison of robotic surgery skill acquisition between DV-Trainer and da Vinci surgical system: a randomized controlled study. J Urol. 2011;185(Suppl):e593.Google Scholar
  58. 58.
    Sedlack RE, Kolars JC. Computer simulator training enhances the competency of gastroenterology fellows at colonoscopy: results of a pilot study. Am J Gastroenterol. 2004;99:33–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Wass V, Van der Vleuten C, Shatzer J, Jones R. Assessment of clinical competence. Lancet. 2001;357:945–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Colaco M, Balica A, Su D, Barone J. Initial experiences with RoSS surgical simulator in residency training: a validity and model analysis. J Robot Surg. 2013;7(1):71–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Seixas-Mikelus SA, et al. Face validation of a novel robotic surgical simulator. Urology. 2010;76:357–60.PubMedCrossRefGoogle Scholar
  62. 62.
    Sethi AS, Peine WJ, Mohammadi Y, et al. Validation of a novel virtual reality robotic simulator. J Endourol. 2009;23:503–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Kesavadas T, et al. Validation of robotic surgery simulator (RoSS). Stud Health Technol Inform. 2011;163:274–6.PubMedGoogle Scholar
  64. 64.
    Smith R, Patel V, Satava R. Fundamentals of robotic surgery: a course of basic robotic surgery skills based upon a 14-society consensus template of outcomes measures and curriculum development. Int J Med Robot. 2014;10(3):379–84.PubMedCrossRefGoogle Scholar
  65. 65.
    Rogula T, Acquafresca PA, Bazan M. Training and credentialing in robotic surgery. In: Essentials of robotic surgery. Cham: Springer International Publishing; 2015.Google Scholar
  66. 66.
    Himpens J, Leman G, Cadière GB. Telesurgical laparoscopic cholecystectomy. Surg Endosc. 1998;12:81091.CrossRefGoogle Scholar
  67. 67.
    Cadiere GB, Himpens J, Vertruyen M, et al. The world’s first obesity surgery performed by a surgeon at a distance. Obes Surg. 1999;2:206–9.CrossRefGoogle Scholar
  68. 68.
    Horgan S, Vanuno D. Robots in laparoscopic surgery. J Laparoendosc Adv Surg Tech A. 2001;11(6):415–9.  https://doi.org/10.1089/10926420152761950.PubMedCrossRefGoogle Scholar
  69. 69.
    Sudan R, Puri V, Sudan D. Robotically assisted biliary pancreatic diversion with a duodenal switch: a new technique. Surg Endosc. 2007;21:729–33.PubMedCrossRefGoogle Scholar
  70. 70.
    Ayloo S, Buchs NC, Addeo P, Bianco FM, Giulianotti PC. Robot-assisted sleeve gastrectomy for super-morbidly obese patients. J Laparoendosc Adv Surg Tech A. 2011;21:295–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Perrenot C, Perez M, Tran N, et al. The virtual reality simulator dV-Treiner® is a valid assessment tool for robotic surgical skills. Surg Endosc. 2012;26(9):2587–93.PubMedCrossRefGoogle Scholar
  72. 72.
    Wilson EB, Sudan R. The evolution of robotic bariatric surgery. World J Surg. 2013;37:2756–60.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Parikh MS, Shen R, Weiner M, Siegel N, Ren CJ. Laparoscopic bariatric surgery in super-obese patients (BMI>50) is safe and effective: a review of 332 patients. Obes Surg. 2005;15:858–63.PubMedCrossRefGoogle Scholar
  74. 74.
    Gagner M, Gumbs AA, Milone L, Yung E, Goldenberg L, Pomp A. Laparoscopic sleeve gastrectomy for the super-super-obese (body mass index >60 kg/m(2)). Surg Today. 2008;38:399–403.PubMedCrossRefGoogle Scholar
  75. 75.
    Ramos AC, Domene CE, Volpi P, Pajeki D, D’Almeida LAV, Ramos MG, Bastos ELS, Kim KC. Early outcomes of the first Brazilian experience in totally robotic bariatric surgery. Arq Bras Cir Dig. 2013;26(Supplement 1):2–7.CrossRefGoogle Scholar
  76. 76.
    Fantola G, Perrenot C, Germain A, Ayav A, et al. Simulator practice is not enough to become a robotic surgeon: the driving lessons model. J Laparoendosc Adv Surg Tech A. 2014;24(4):260.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luiz Alfredo Vieira d’Almeida
    • 1
    • 2
  • Daniella Guimarães Cavalcanti Freitas
    • 2
    • 3
  1. 1.Samaritano HospitalRio de JaneiroBrazil
  2. 2.Federal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Queen Mary University of LondonLondonUK

Personalised recommendations