Advertisement

State Estimation for Delayed GRNs

  • Xian ZhangEmail author
  • Yantao Wang
  • Ligang Wu
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 207)

Abstract

Usually, not all states information (that is, mRNA and protein concentrations) of GRNs are measurable, we have to estimate unmeasured state information by making use of the effective network outputs.

References

  1. 1.
    Anbuvithya, R., Mathiyalagan, K., Sakthivel, R., Prakash, P.: Sampled-data state estimation for genetic regulatory networks with time-varying delays. Neurocomputing 151, 737–744 (2015)CrossRefGoogle Scholar
  2. 2.
    Lakshmanan, S., Park, H., Jung, H.Y., Balasubramaniam, P., Lee, S.M.: Design of state estimator for genetic regulatory networks with time-varying delays and randomly occurring uncertainties. Biosystems 111(1), 51–70 (2013)CrossRefGoogle Scholar
  3. 3.
    Lee, T.H., Lakshmanan, S., Park, J.H., Balasubramaniam, P.: State estimation for genetic regulatory networks with mode-dependent leakage delays, time-varying delays, and Markovian jumping parameters. IEEE Trans. Nanobiosci. 12(4), 363–375 (2013)CrossRefGoogle Scholar
  4. 4.
    Liang, J.L., Lam, J.: Robust state estimation for stochastic genetic regulatory networks. Int. J. Syst. Sci. 41(1), 47–63 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Liang, J.L., Lam, J., Wang, Z.D.: State estimation for Markov-type genetic regulatory networks with delays and uncertain mode transition rates. Phys. Lett. A 373(47), 4328–4337 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lv, B., Liang, J.L., Cao, J.D.: Robust distributed state estimation for genetic regulatory networks with Markovian jumping parameters. Commun. Nonlinear Sci. Numer. Simul. 16(10), 4060–4078 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mohammadian, M., Momeni, H.R., Karimi, H.S., Shafikhani, I., Tahmasebi, M.: An LPV based robust peak-to-peak state estimation for genetic regulatory networks with time varying delay. Neurocomputing 160, 261–273 (2015)CrossRefGoogle Scholar
  8. 8.
    Sun, J., Liu, G.P., Chen, J.: Delay-dependent stability and stabilization of neutral time-delay systems. Int. J. Robust Nonlinear Control 19(12), 1364–1375 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Tian, L.P., Wang, Z.J., Mohammadbagheri, A., Wu, F.X.: State observer design for delayed genetic regulatory networks. Comput. Math. Meth. Med. 2014 (Article ID 761562, 7 pages, 2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Vembarasan, V., Nagamani, G., Balasubramaniam, P., Park, J.H.: State estimation for delayed genetic regulatory networks based on passivity theory. Math. Biosci. 244(2), 165–175 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wu, Y.W., Hu, L.J., Rong, C.G., Sheng, D.Z., He, Z.Q.: Estimating uncertain delayed genetic regulatory networks: an adaptive filtering approach. IEEE Trans. Autom. Control 54(4), 892–897 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Xue, Y., Cui, S.C., Zhang, X.: Design of state observer for genetic regulatory networks with interval time-varying delays. In: Proceedings of the 34th Chinese Control Conference (CCC), pp. 2901–2906 (2015)Google Scholar
  13. 13.
    Zhang, X., Fan, X., Wu, L.: Reduced- and full-order observers for delayed genetic regulatory networks. IEEE Trans. Cybern. 48(7), 1989–2000 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematical ScienceHeilongjiang UniversityHarbinChina
  2. 2.School of AstronauticsHarbin Institute of TechnologyHarbinChina

Personalised recommendations