Advertisement

ModHMM: A Modular Supra-Bayesian Genome Segmentation Method

  • Philipp BennerEmail author
  • Martin Vingron
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11467)

Abstract

Genome segmentation methods are powerful tools to obtain cell type or tissue specific genome-wide annotations and are frequently used to discover regulatory elements. However, traditional segmentation methods show low predictive accuracy and their data-driven annotations have some undesirable properties. As an alternative, we developed ModHMM, a highly modular genome segmentation method. Inspired by the supra-Bayesian approach, it incorporates predictions from a set of classifiers. This allows to compute genome segmentations by utilizing state-of-the-art methodology. We demonstrate the method on ENCODE data and show that it outperforms traditional segmentation methods not only in terms of predictive performance, but also in qualitative aspects. Therefore, ModHMM is a valuable alternative to study the epigenetic and regulatory landscape across and within cell types or tissues. The software is freely available at https://github.com/pbenner/modhmm.

Notes

Acknowledgements

We thank Anna Ramisch, Tobias Zehnder, and Verena Heinrich for their comments on the manuscript and many inspiring discussions.

PB was supported by the German Ministry of Education and Research (BMBF, grant no. 01IS18037G).

References

  1. 1.
    Andersson, R., et al.: An atlas of active enhancers across human cell types and tissues. Nature 507(7493), 455 (2014)CrossRefGoogle Scholar
  2. 2.
    Barski, A., et al.: High-resolution profiling of histone methylations in the human genome. Cell 129(4), 823–837 (2007)CrossRefGoogle Scholar
  3. 3.
    Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., Greenleaf, W.J.: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10(12), 1213 (2013)CrossRefGoogle Scholar
  4. 4.
    Buenrostro, J.D., Wu, B., Chang, H.Y., Greenleaf, W.J.: ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoco. Mol. Biol. 109(1), 21–29 (2015)Google Scholar
  5. 5.
    Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268(1), 78–94 (1997)CrossRefGoogle Scholar
  6. 6.
    Calo, E., Wysocka, J.: Modification of enhancer chromatin: what, how, and why? Mol. cell 49(5), 825–837 (2013)CrossRefGoogle Scholar
  7. 7.
    Cappé, O., Moulines, E., Rydén, T.: Inference in Hidden Markov Models, vol. 6. Springer, Heidelberg (2005).  https://doi.org/10.1007/0-387-28982-8zbMATHCrossRefGoogle Scholar
  8. 8.
    Consortium, E.P., et al.: An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414), 57 (2012)CrossRefGoogle Scholar
  9. 9.
    Creyghton, M.P., et al.: Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Nat. Acad. Sci. 107(50), 21931–21936 (2010)CrossRefGoogle Scholar
  10. 10.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)Google Scholar
  11. 11.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. A Wiley-Interscience Publication, New York (1973)zbMATHGoogle Scholar
  12. 12.
    Ernst, J., Kellis, M.: ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9(3), 215 (2012)CrossRefGoogle Scholar
  13. 13.
    Ernst, J., Kellis, M.: Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12(12), 2478 (2017)CrossRefGoogle Scholar
  14. 14.
    Galassi, U., Giordana, A., Saitta, L.: Structured hidden markov model: a general framework for modeling complex sequences. In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 290–301. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74782-6_26CrossRefGoogle Scholar
  15. 15.
    Gelfand, A.E., Mallick, B.K., Dey, D.K.: Modeling expert opinion arising as a partial probabilistic specification. J. Am. Stat. Assoc. 90(430), 598–604 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Genest, C., Zidek, J.V., et al.: Combining probability distributions: a critique and an annotated bibliography. Stat. Sci. 1(1), 114–135 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Gorkin, D., et al.: Systematic mapping of chromatin state landscapes during mouse development. bioRxiv p. 166652 (2017)Google Scholar
  18. 18.
    He, Y., et al.: Improved regulatory element prediction based on tissue-specific local epigenomic signatures. Proc. Nat. Acad. Sci. 114(9), E1633–E1640 (2017)CrossRefGoogle Scholar
  19. 19.
    Heintzman, N.D., et al.: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39(3), 311 (2007)CrossRefGoogle Scholar
  20. 20.
    Heinz, S., Romanoski, C.E., Benner, C., Glass, C.K.: The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16(3), 144 (2015)CrossRefGoogle Scholar
  21. 21.
    Hoffman, M.M., Buske, O.J., Wang, J., Weng, Z., Bilmes, J.A., Noble, W.S.: Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat. Methods 9(5), 473 (2012)CrossRefGoogle Scholar
  22. 22.
    Hoffman, M.M., et al.: Integrative annotation of chromatin elements from encode data. Nucleic Acids Res. 41(2), 827–841 (2012)CrossRefGoogle Scholar
  23. 23.
    Jacobs, R.A.: Methods for combining experts’ probability assessments. Neural Comput. 7(5), 867–888 (1995)CrossRefGoogle Scholar
  24. 24.
    Koch, F., et al.: Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat. Struct. Mol. Biol. 18(8), 956 (2011)CrossRefGoogle Scholar
  25. 25.
    Kundaje, A., et al.: Integrative analysis of 111 reference human epigenomes. Nature 518(7539), 317 (2015)CrossRefGoogle Scholar
  26. 26.
    Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P., Reinberg, D.: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16(22), 2893–2905 (2002)CrossRefGoogle Scholar
  27. 27.
    Lauberth, S.M., et al.: H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152(5), 1021–1036 (2013)CrossRefGoogle Scholar
  28. 28.
    Lindley, D.: The improvement of probability judgements. J. Roy. Stat. Soc. Ser. A (Gen.) 145, 117–126 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Lindley, D.: Reconciliation of discrete probability distributions. In: J. Bernardo, M. DeGroot, D. Lindley, A. Smith (eds.) Bayesian statistics 2: Proceedings of the Second Valencia International Meeting, pp. 375–390. Valencia University Press (1985)Google Scholar
  30. 30.
    Lindley, D.V., Tversky, A., Brown, R.V.: On the reconciliation of probability assessments. J. Roy. Stat. Soc. Ser. A (Gen.) 142, 146–180 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Mammana, A., Chung, H.R.: Chromatin segmentation based on a probabilistic model for read counts explains a large portion of the epigenome. Genome Biol. 16(1), 151 (2015)CrossRefGoogle Scholar
  32. 32.
    Margueron, R., Reinberg, D.: The polycomb complex PRC2 and its mark in life. Nature 469(7330), 343 (2011)CrossRefGoogle Scholar
  33. 33.
    Maron, M.E.: Automatic indexing: an experimental inquiry. J. ACM (JACM) 8(3), 404–417 (1961)zbMATHCrossRefGoogle Scholar
  34. 34.
    Mitchell, T.M.: Machine Learning. McGraw-Hill Boston, MA (1997)zbMATHGoogle Scholar
  35. 35.
    Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B.: Mapping and quantifying mammalian transcriptomes by RNA-seq. Nature Methods 5(7), 621 (2008)CrossRefGoogle Scholar
  36. 36.
    Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  37. 37.
    Ramírez, F., et al.: deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44(W1), W160–W165 (2016)CrossRefGoogle Scholar
  38. 38.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia (2016)zbMATHGoogle Scholar
  39. 39.
    Saksouk, N., Simboeck, E., Déjardin, J.: Constitutive heterochromatin formation and transcription in mammals. Epigenet. Chromatin 8(1), 3 (2015)CrossRefGoogle Scholar
  40. 40.
    Shiraki, T., et al.: Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Nat. Acad. Sci. 100(26), 15776–15781 (2003)CrossRefGoogle Scholar
  41. 41.
    Spyrou, C., Stark, R., Lynch, A.G., Tavaré, S.: BayesPeak: Bayesian analysis of ChIP-seq data. BMC Bioinf. 10(1), 299 (2009)CrossRefGoogle Scholar
  42. 42.
    Valouev, A., et al.: Genome-wide analysis of transcription factor binding sites based on ChIP-seq data. Nat. Methods 5(9), 829 (2008)CrossRefGoogle Scholar
  43. 43.
    Wagner, E.J., Carpenter, P.B.: Understanding the language of Lys36 methylation at histone H3. Nature Rev. Mol. Cell Biol. 13(2), 115 (2012)CrossRefGoogle Scholar
  44. 44.
    Wilbanks, E.G., Facciotti, M.T.: Evaluation of algorithm performance in ChIP-seq peak detection. PloS One 5(7), e11471 (2010)CrossRefGoogle Scholar
  45. 45.
    Won, K.J., et al.: Comparative annotation of functional regions in the human genome using epigenomic data. Nucleic Acids Res. 41(8), 4423–4432 (2013)CrossRefGoogle Scholar
  46. 46.
    Zhang, Y., et al.: Model-based analysis of ChIP-seq (MACS). Genome Biol. 9(9), R137 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computational Molecular BiologyMax Planck Institute for Molecular GeneticsBerlinGermany

Personalised recommendations