Advertisement

An Efficient and Secure Forward Error Correcting Scheme for DNA Data Storage

  • Anouar YatribiEmail author
  • Mostafa Belkasmi
  • Fouad Ayoub
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 942)

Abstract

In this paper, a new efficient error correcting scheme for DNA archival digital data storage is proposed. We devise a double protection scheme for DNA oligos, aiming to ensure the protection of both information and indexing header data from both symbol flipping and erasure-burst errors, using two different cyclic ternary difference-set codes, which are known to be completely orthogonalisable and very easy to decode using a simple majority-logic decoding algorithm. We show that the proposed scheme is efficient and easily scalable, and provides a coding potential of 1.97 bit per nucleotide, and a reasonable net information density of 0.75 bit/nt under the considered experimental conditions, with relatively a lower decoding complexity and costs compared to other DNA data storage approaches.

References

  1. 1.
    Reinsel, D., Gantz, J., Rydning, J.: Data age 2025: the evolution of data to life-critical. Don’t Focus on Big Data (2017)Google Scholar
  2. 2.
    Baum, E.B.: Building an associative memory vastly larger than the brain. Science 268(5210), 583–585 (1995)CrossRefGoogle Scholar
  3. 3.
    Goldman, N., Bertone, P., Chen, S., Dessimoz, C., LeProust, E.M., Sipos, B., Birney, E.: Towards practical, high-capacity, low maintenance information storage in synthesized DNA. Nature 494(7435), 77 (2013)CrossRefGoogle Scholar
  4. 4.
    Church, G.M., Gao, Y., Kosuri, S.: Next generation digital information storage in DNA. Science 337(6102), 1628 (2012)CrossRefGoogle Scholar
  5. 5.
    Limbachiya, D., Dhameliya, V., Khakhar, M., Gupta, M.K.: On optimal family of codes for archival DNA storage. arXiv preprint arXiv:1501.07133 (2015)
  6. 6.
    Grass, R.N., Heckel, R., Puddu, M., Paunescu, D., Stark, W.J.: Robust chemical preservation of digital information on DNA in silica with error-correcting codes. Angew. Chem. Int. Ed. 54(8), 2552–2555 (2015)CrossRefGoogle Scholar
  7. 7.
    Blawat, M., Gaedke, K., Hutter, I., Chen, X.-M., Turczyk, B., Inverso, S., Pruitt, B.W., Church, G.M.: Forward error correction for DNA data storage. Procedia Compute. Sci. 80, 1011–1022 (2016)CrossRefGoogle Scholar
  8. 8.
    Bornholt, J., Lopez, R., Carmean, D.M., Ceze, L., Seelig, G., Strauss, K.: A DNA based archival storage system. ACM SIGOPS Oper. Syst. Rev. 50(2), 637–649 (2016)CrossRefGoogle Scholar
  9. 9.
    Jain, S., Hassanzadeh, F.F., Schwartz, M., Bruck, J.: Duplication-correcting codes for data storage in the DNA of living organisms. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1028–1032. IEEE (2016)Google Scholar
  10. 10.
    Erlich, Y., Zielinski, D.: DNA fountain enables a robust and efficient storage architecture. Science 355(6328), 950–954 (2017)CrossRefGoogle Scholar
  11. 11.
    Erlich, Y., Zielinski, D.: Capacity-approaching DNA storage. bioRxiv, pp. 074237 (2016)Google Scholar
  12. 12.
    Heider, D., Barnekow, A.: DNA-based watermarks using the dna-crypt algorithm. BMC Bioinf. 8(1), 176 (2007)CrossRefGoogle Scholar
  13. 13.
    Weldon Jr., E.J.: Difference-set cyclic codes. Bell Syst. Tech. J. 45(7), 1045–1055 (1966)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rudolph, L.D.: Geometric configurations and majority logic decodable codes. Ph.D. thesis, MEE-University of Oklahoma (1964)Google Scholar
  15. 15.
    Lucas, R., Fossorier, M.P.C., Kou, Y., Lin, S.: Iterative decoding of one-step majority logic decodable codes based on belief propagation. IEEE Trans. Commun. 48(6), 931–937 (2000)CrossRefGoogle Scholar
  16. 16.
    Kou, Y., Lin, S., Fossorier, M.P.C.: Low-density parity-check codes based on finite geometries: a rediscovery and new results. IEEE Trans. Inf. Theor. 47(7), 2711–2736 (2001)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Singer, J.: A theorem in finite projective geometry and some applications to number theory. Trans. Am. Math. Soc. 43(3), 377–385 (1938)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Shu, L., Costello, D.J.: Error Control Coding. The Second International edition, Prentice-Hall, pp. 704–712 (2004)Google Scholar
  19. 19.
    Ryan, W., Lin, S.: Channel Codes: Classicaland Modern. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.ICES Team, ENSIASMohammed V University in RabatRabatMorocco
  2. 2.MTIC Team, LaREAMA Lab, CRMEFKenitraMorocco

Personalised recommendations