Advertisement

Herbonanoceuticals: A Novel Beginning in Drug Discovery and Therapeutics

  • Nidhi Saini
  • Abhilasha Thakur
  • Pawan Kaur
  • Suresh Kumar Gahlawat
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

The Indian pharmaceutical industry is the world’s second largest industry (by volume) that develops products and market drugs licensed for use as medications. Medicines manufactured in the modern era are associated with major controversies such as non–target specificity, resistance, repeated administration, immune rejection, and other adverse effects on the body. Thus, there is a great need to find drugs that do not raise the aforementioned issues. Nature is an excellent hub providing a diverse range of phytoconstituents that open the way to phototherapeutics, which need a scientific path to deliver the active elements in a supported way to increase patient compliance and reduce the need for repeated administration. To discover a novel phytochemical as a lead compound for a therapeutic purpose is a real challenge. In former times, drug discovery was a complex process, as it took several years to find a lead compound for use against a particular disease. Nowadays, however, virtual screening methods have been developed, which are target specific, time consuming, and cost effective. To avoid increased and repeated administration of a drug, nanosized drug delivery systems for herbal drugs have been developed to enhance the activity and overcome problems associated with synthetic medicines. This review summarizes three main fields: drug discovery, docking for drug design, and last—but not least—drug delivery systems. Nowadays, nanobased drug delivery systems are in demand for delivery of herbal medicines used for therapeutic purposes. Herbonanoceuticals—herbal drugs of a nanosize—have better remedial value and fewer detrimental effects than modern medicines. Therefore, herbonanoceuticals can be a boon in the field of therapeutics.

Keywords

Herbonanoceuticals Phytoconstituents Drug discovery Molecular docking Therapeutics 

References

  1. Abu Salah KM, Ansari AA, Alrokayan SA (2010) DNA-based applications in nanobiotechnology. Bio Med Res Int 715295:1–15Google Scholar
  2. Agarwal P, Huang D, Thakur SS, Rupenthal ID (2018) Nanotechnology for ocular drug delivery. In: Grumezescu AM (ed) Design of nanostructures for versatile therapeutic applications. William Andrew, Oxford, pp 137–188.  https://doi.org/10.1016/B978-0-12-813667-6.00004-8CrossRefGoogle Scholar
  3. Ali MA, Choudhary RK (2011) India needs more plant taxonomists. Nature 471(7336):37Google Scholar
  4. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ambwani S, Tandon R, Gupta A, Ambwani TK, Chauhan RS (2015) Nanoparticles: utility, immuno-toxicology and ethical issues. J Immunol Immunopathol 17:68–78CrossRefGoogle Scholar
  6. Anderson AC (2003) The process of structure-based drug design. Chem Biol 10(9):787–797PubMedCrossRefPubMedCentralGoogle Scholar
  7. Anderson JM, Shive MS (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28(1):5–24PubMedCrossRefPubMedCentralGoogle Scholar
  8. Andersson CD, Chen BY, Linusson A (2010) Mapping of ligand‐binding cavities in proteins. Proteins: Struct Funct Bioinf 78(6):1408–1422Google Scholar
  9. Anupama S, Somashekar CN, Tamizhmani T (2016) Recent approach for drug release from matrix tablet: a review. Asian J Res Biol Pharm Sci 4(3):122–132Google Scholar
  10. Bawendi MG, Kim SW, Zimmer JP (2012) Nanocrystals including III–V semiconductors. US Patent No. 8,134,175. US Patent and Trademark Office, Washington, DCGoogle Scholar
  11. Baxter CA, Murray CW, Waszkowycz BLJ, Sykes RA, Bone RG, Perkins TDJ, Wylie W (2000) New approach to molecular docking and its application to virtual screening of chemical databases. J Chem Inf Comput Sci 40(2):254–262PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 5:571–577CrossRefGoogle Scholar
  14. Bonifacio BV, Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M (2014) Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 9:1–15PubMedCrossRefPubMedCentralGoogle Scholar
  15. Brigger I, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36CrossRefGoogle Scholar
  16. Calderon-Colon X, Raimondi G, Benkoski JJ, Patrone JB (2015) Solid lipid nanoparticles (SLNs) for intracellular targeting applications. J Vis Exp 105.  https://doi.org/10.3791/53102
  17. Cerda SJ, Gomez EH, Nunez AG, Rivero IA, Ponce GY, Lopez FLZ (2017) A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J Saudi Chem Soc 21(3):341–348CrossRefGoogle Scholar
  18. Chen O, Zhao J, Chauhan VP, Cui J, Wong C, Harris DK, Wei H, Han HS, Fukumura D, Jain RK, Bawendi MG (2013) Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat Mater 12(5):445PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH (2012) Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 14(1):133–141PubMedPubMedCentralCrossRefGoogle Scholar
  20. Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146PubMedCrossRefPubMedCentralGoogle Scholar
  21. Dar AM, Khan S (2016) Spectroscopic, viscositic, DNA binding and cytotoxic studies of newly synthesized steroidal imidazolidines. J Fluoresc 26(2):639–649PubMedCrossRefPubMedCentralGoogle Scholar
  22. Deepagan VG, Kwon S, You DG, Um W, Ko H, Lee H, Jo DG, Kang YM, Park JH (2016) In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery. Biomaterials 103:56–66PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dillard CJ, German JB (2000) Phytochemicals: nutraceuticals and human health. J Sci Food Agric 80(12):1744–1756CrossRefGoogle Scholar
  24. Doty RC, Tshikhudo TR, Brust M, Fernig DG (2005) Extremely stable water-soluble Ag nanoparticles. Chem Mater 17(18):4630–4635CrossRefGoogle Scholar
  25. Doughari JH (2012) Phytochemicals: extraction methods, basic structures and mode of action as potential chemotherapeutic agents. In: Rao V (ed) Phytochemicals—a global perspective of their role in nutrition and health . InTechOpen.  https://doi.org/10.5772/26052CrossRefGoogle Scholar
  26. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779PubMedCrossRefPubMedCentralGoogle Scholar
  27. Du WL, Niu SS, Xu YL, Xu ZR, Fan CL (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym 75(3):385–389CrossRefGoogle Scholar
  28. Dudek AZ, Arodz T, Galvez J (2006) Computational methods in developing quantitative structure–activity relationships (QSAR): a review. Comb Chem High Throughput Screen 9(3):213–228PubMedCrossRefPubMedCentralGoogle Scholar
  29. Edmundson MC, Capeness M, Horsfall L (2014) Exploring the potential of metallic nanoparticles within synthetic biology. New Biotechnol 31(6):572–578CrossRefGoogle Scholar
  30. Ekins S, Mestres J, Testa B (2007) In silico pharmacology for drug discovery: applications to targets and beyond. Br J Pharmacol 152(1):21–37PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109(1):69PubMedPubMedCentralGoogle Scholar
  32. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20PubMedCrossRefPubMedCentralGoogle Scholar
  33. Ferreira LG, dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20(7):13384–13421PubMedPubMedCentralCrossRefGoogle Scholar
  34. Galib BM, Mashru M, Jagtap C, Patgiri BJ, Prajapati PK (2011) Therapeutic potentials of metals in ancient India: a review through Charaka Samhita. J Ayurveda Integr Med 2:55–63PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ganesan P, Arulselvan P, Choi DK (2017) Phytobioactive compound–based nanodelivery systems for the treatment of type 2 diabetes mellitus—current status. Int J Nanomedicine 12:1097–1111PubMedPubMedCentralCrossRefGoogle Scholar
  36. Geetha R, Ashokkumar T, Tamilselvan S, Govindaraju K, Sadiq M (2013) Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol 4:91–98PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gogoi A, Sarma KC (2017) Synthesis of the novel β-cyclodextrin supported CeO2 nanoparticles for the catalytic degradation of methylene blue in aqueous suspension. Mater Chem Phys 194:327–336CrossRefGoogle Scholar
  38. Gomes A, Ghosh S, Sengupta J, Datta P, Gomes A (2014) Herbonanoceuticals: a new step towards herbal therapeutics. Med Aromat Plants 3:162Google Scholar
  39. Gramatica P (2008) A short history of QSAR evolution. http://qsarworld.com/TempFileupload/Shorthistoryofqsar.pdf. Accessed 25th May, 2018
  40. Gregory AE, Williamson D, Titball R (2013) Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 3:13PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hansch C, Kurup A, Garg R, Gao H (2001) Chem-bioinformatics and QSAR: a review of QSAR lacking positive hydrophobic terms. Chem Rev 101(3):619–672PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hariharan P, Subburaju T (2012) Medicinal plants and its standardization—a global and industrial overview. Global J Med Plant Res 1(1):10–13Google Scholar
  43. Harshiny M, Iswarya CN, Matheswaran M (2015) Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent. Powder Technol 286:744–749CrossRefGoogle Scholar
  44. Hassan Baig M, Ahmad K, Roy S, Mohammad Ashraf J, Adil M, Haris Siddiqui M, Khan S, Khan MA, Provaznik I, Choi I (2016) Computer aided drug design: success and limitations. Curr Pharm Des 22(5):572–581CrossRefGoogle Scholar
  45. Holliday JD, Kanoulas E, Malim N, Willett P (2011) Multiple search methods for similarity-based virtual screening: analysis of search overlap and precision. J Cheminf 3(1):29CrossRefGoogle Scholar
  46. Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharmacol 162(6):1239–1249PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hussein AK (2016) Applications of nanotechnology to improve the performance of solar collectors—recent advances and overview. Renew Sust Energ Rev 62:767–792CrossRefGoogle Scholar
  48. Iram F, Iqbal MS, Athar MM, Saeed MZ, Yasmeen A (2014) Glucoxylan mediated green synthesis of gold and silver nanoparticles and their phytotoxicity study. Carbohydr Polym 104:29–33PubMedCrossRefPubMedCentralGoogle Scholar
  49. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650CrossRefGoogle Scholar
  50. Jain AN (2004) Ligand-based structural hypotheses for virtual screening. J Med Chem 47(4):947–961PubMedCrossRefPubMedCentralGoogle Scholar
  51. Jones MC, Leroux JC (1999) Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48(2):101–111PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kano K, Fendler JH (1978) Pyranine as a sensitive pH probe for liposome interiors and surfaces: pH gradients across phospholipid vesicles. Biochim Biophys Acta Biomembr 509(2):289–299CrossRefGoogle Scholar
  53. Kaserer T, Temml V, Kutil Z, Vanek T, Landa P, Schuster D (2015) Prospective performance evaluation of selected common virtual screening tools. Case study: cyclooxygenase (COX) 1 and 2. Eur J Med Chem 96:445–457PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47(1):113–131PubMedCrossRefPubMedCentralGoogle Scholar
  55. Khan SB, Faisal M, Rahman MM, Jamal A (2011) Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Sci Total Environ 409(15):2987–2992PubMedCrossRefPubMedCentralGoogle Scholar
  56. Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2017.05.011
  57. Kickelbick G, Schubert US (2003) Advances in nanophase materials and nanotechnology. Functionalization and Surface Treatment of Nanoparticles, MI Baraton, Ed, 91–102Google Scholar
  58. Krug HF, Wick P (2011) Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed 50:1260–1278CrossRefGoogle Scholar
  59. Kubinyi H (1997) QSAR and 3D QSAR in drug design part 1: methodology. Drug Discov Today 2(11):457–467CrossRefGoogle Scholar
  60. Kumar P, Kulkarni PK, Srivastava AA (2015) Pharmaceutical application of nanoparticles in drug delivery system. J Chem Pharm Res 7:703–712Google Scholar
  61. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300(5624):1434–1436PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lavecchia A, Di Giovanni C (2013) Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 20(23):2839–2860PubMedCrossRefPubMedCentralGoogle Scholar
  63. Lee CH, Huang HC, Juan HF (2011) Reviewing ligand-based rational drug design: the search for an ATP synthase inhibitor. Int J Mol Sci 12(8):5304–5318PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lionta E, Spyrou GK, Vassilatis D, Cournia Z (2014) Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14(16):1923–1938PubMedPubMedCentralCrossRefGoogle Scholar
  65. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lu AH, Salabas EE, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244CrossRefGoogle Scholar
  67. Lyne PD (2002) Structure-based virtual screening: an overview. Drug Discov Today 7(20):1047–1055PubMedCrossRefPubMedCentralGoogle Scholar
  68. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6:35–44Google Scholar
  69. Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11):592–599PubMedCrossRefPubMedCentralGoogle Scholar
  70. Malik JK, Soni H, Singhai AK (2013) QSAR—application in drug design. Int J Pharm Res Allied Sci 2(1):1–13Google Scholar
  71. Mallick S, Choi JS (2014) Liposomes: versatile and biocompatible nanovesicles for efficient biomolecules delivery. J Nanosci Nanotechnol 14(1):755–765PubMedCrossRefPubMedCentralGoogle Scholar
  72. Manish G, Vimukta S (2011) Targeted drug delivery system: a review. Res J Chem Sci 1(2):135–138Google Scholar
  73. Manivannan S, Ramaraj R (2012) Synthesis of cyclodextrin-silicate sol–gel composite embedded gold nanoparticles and its electrocatalytic application. Chem Eng J 210:195–202CrossRefGoogle Scholar
  74. Mannhold R, Krogsgaard-Larsen P, Timmerman H (2008) QSAR: Hansch analysis and related approaches, vol 1. VCH, WeinheimGoogle Scholar
  75. McBain SC, Yiu HH, Dobson J (2008) Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine 3(2):169PubMedPubMedCentralGoogle Scholar
  76. McGann M (2011) FRED pose prediction and virtual screening accuracy. J Chem Inf Model 51(3):578–596PubMedCrossRefPubMedCentralGoogle Scholar
  77. Mekenyan OG, Veith GD (1994) The electronic factor in QSAR: MO-parameters, competing interactions, reactivity and toxicity. SAR and QSAR in Environ Res 2(1–2):129–143CrossRefGoogle Scholar
  78. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157PubMedPubMedCentralCrossRefGoogle Scholar
  79. Mohan S, Oluwafemi OS, George SC, Jayachandran VP, Lewu FB, Songca SP, Kalarikkal N, Thomas S (2014) Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties. Carbohydr Polym 106:469–474PubMedCrossRefPubMedCentralGoogle Scholar
  80. Monnard PA, Oberholzer T, Luisi P (1997) Entrapment of nucleic acids in liposomes. Biochim Biophys Acta Biomembr 1329(1):39–50CrossRefGoogle Scholar
  81. Myint KZ, Xie XQ (2010) Recent advances in fragment-based QSAR and multi-dimensional QSAR methods. Int J Mol Sci 11(10):3846–3866PubMedPubMedCentralCrossRefGoogle Scholar
  82. Nantasenamat C, Isarankura-Na-Ayudhya C, Naenna T, Prachayasittikul V (2009) A practical overview of quantitative structure–activity relationship. EXCLI J 8:74–88Google Scholar
  83. Narayanan R, El-Sayed MA (2003) Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP–palladium nanoparticles. J Am Chem Soc 125(27):8340–8347PubMedCrossRefPubMedCentralGoogle Scholar
  84. Navgire ME, Gogoi P, Mallesham B, Rangaswamy A, Reddy BM, Lande MK (2016) β-Cyclodextrin supported MoO3–CeO2 nanocomposite material as an efficient heterogeneous catalyst for degradation of phenol. RSC Adv 6(34):28679–28687CrossRefGoogle Scholar
  85. Neouze MA, Schubert U (2008) Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatshefte fur Chemie-Chem Mon 139(3):183–195CrossRefGoogle Scholar
  86. Nikalje AP (2015) Nanotechnology and its applications in medicine. Med Chem 5(2):081–089CrossRefGoogle Scholar
  87. Novotarskyi S (2013) QSAR approaches to predict human cytochrome P450 inhibition. Doctoral dissertation, Technische Universität MünchenGoogle Scholar
  88. Pal D, Sahu CK, Haldar A (2014) Bhasma: the ancient Indian nanomedicine. J Adv Pharm Technol Res 5:4–12PubMedPubMedCentralCrossRefGoogle Scholar
  89. Pandey RK, Kawabata Y, Teraji S, Norisuye T, Tran-Cong-Miyata Q, Soh S, Nakanishi H (2017) Metal nanowire–based hybrid electrodes exhibiting high charge/discharge rates and long-lived electrocatalysis. ACS Appl Mater Interfaces 9(41):36350–36357PubMedCrossRefPubMedCentralGoogle Scholar
  90. Pantarotto D, Briand JP, Prato M, Bianco A (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 1:16–17CrossRefGoogle Scholar
  91. Parveen A, Rao S (2015) Cytotoxicity and genotoxicity of biosynthesized gold and silver nanoparticles on human cancer cell lines. J Clust Sci 26(3):775–788CrossRefGoogle Scholar
  92. Paul S, Chugh A (2011) Assessing the role of Ayurvedic bhasmas as ethno-nanomedicine in the metal based nanomedicine patent regime. J Intellect Disabil Res 16:509–515Google Scholar
  93. Pavani T, Chakra CS, Rao KV (2013) A green approach for the synthesis of nano-sized iron oxide, by Indian Ayurvedic modified bhasmikaran method. Am J Pharm Sci 1:1–7Google Scholar
  94. Petralia S, Barbuzzi T, Ventimiglia G (2012) Polymerase chain reaction efficiency improved by water soluble β-cyclodextrins capped platinum nanoparticles. Mater Sci Eng C 32(4):848–850CrossRefGoogle Scholar
  95. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart:963961.  https://doi.org/10.1155/2014/963961CrossRefGoogle Scholar
  96. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330.  https://doi.org/10.1002/wnan.1363CrossRefGoogle Scholar
  97. Prasad R, Pandey R, Varma A, Barman I (2017) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, UK, pp 53–70Google Scholar
  98. Prasad R, Jha A, Prasad K (2018) Exploring the realms of nature for nanosynthesis. Springer International Publishing. isbn:978-3-319-99570-0. https://www.springer.com/978-3-319-99570-0
  99. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83PubMedCrossRefPubMedCentralGoogle Scholar
  100. Rajesh KM, Ajitha B, Reddy YAK, Suneetha Y, Reddy PS (2018) Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik 154:593–600CrossRefGoogle Scholar
  101. Rao PV, Nallappan D, Madhavi K, Rahman S, Wei LJ, Gan S (2016) Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxid Med Cell Longevity 2016:3685671, 15.  https://doi.org/10.1155/2016/3685671CrossRefGoogle Scholar
  102. Rathod KB, Patel MB, Parmar PK, Kharadi SR, Patel PV, Patel KS (2011) Glimpses of current advances of nanotechnology in therapeutics. Int J Pharm Pharm Sci 3:8–12Google Scholar
  103. Reddy AS, Pati SP, Kumar PP, Pradeep HN, Sastry GN (2007) Virtual screening in drug discovery—a computational perspective. Curr Protein Pept Sci 8(4):329–351PubMedCrossRefPubMedCentralGoogle Scholar
  104. Ruckenstein E, Li ZF (2005) Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Adv Colloid Interf Sci 113(1):43–63CrossRefGoogle Scholar
  105. Safari J, Zarnegar Z (2014) Advanced drug delivery systems: nanotechnology of health design: a review. J Saudi Chem Soc 18(2):85–99CrossRefGoogle Scholar
  106. Sahoo SK, Misra R, Parveen S (2017) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. In: Balogh LP (ed) Nanomedicine in cancer. Pan Stanford, Singapore, pp 73–124Google Scholar
  107. Saxena M, Saxena J, Nema R, Singh D, Gupta A (2013) Phytochemistry of medicinal plants. J Pharmacogn Phytochem 1(6):168–182Google Scholar
  108. Sethi NS (2012) A review on computational methods in developing quantitative structure–activity relationship (QSAR). Int J Drug Res Technol 2(2):189–197Google Scholar
  109. Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S (2016) Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nano 6(4):71Google Scholar
  110. Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R, Tripp RA (2006) Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett 6(11):2630–2636PubMedCrossRefPubMedCentralGoogle Scholar
  111. Sharma C, Singh C (2014) Nano carriers of novel drug delivery system for Ayurveda herbal remedies need of hour: a bird’s eye view. Am J Pharm Tech Res 4:60–69Google Scholar
  112. Silva GA (2004) Introduction to nanotechnology and its applications to medicine. Surg Neurol 61(3):216–220PubMedCrossRefPubMedCentralGoogle Scholar
  113. Simon Z, Chiriac A, Holban S, Ciubotariu D, Mihalas G (1984) Minimum steric difference: the MTD method for QSAR studies. Chemometrics research studies series. Research Studies Press, LetchworthGoogle Scholar
  114. Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599PubMedCrossRefPubMedCentralGoogle Scholar
  115. Sneh-Edri H, Likhtenshtein D, Stepensky D (2011) Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol Pharm 8(4):1266–1275PubMedCrossRefPubMedCentralGoogle Scholar
  116. Sun X, Li Y (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem 116(5):607–611CrossRefGoogle Scholar
  117. Tang H, Lin Y, Andrews C, Sodano HA (2010) Nanocomposites with increased energy density through high aspect ratio PZT nanowires. Nanotechnology 22(1):015702PubMedCrossRefPubMedCentralGoogle Scholar
  118. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534PubMedCrossRefPubMedCentralGoogle Scholar
  119. Tiwari R (2016) Controlled release drug formulation in pharmaceuticals: a study on their application and properties. World J Pharm Res 5:1740–1720Google Scholar
  120. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK (2012) Drug delivery systems: an updated review. Int J Pharm Invest 2(1):2CrossRefGoogle Scholar
  121. Tomasulo A, Ramakrishna MV (1996) Quantum confinement effects in semiconductor clusters. II. J Chem Phys 105(9):3612–3626CrossRefGoogle Scholar
  122. Tong W, Lowis DR, Perkins R, Chen Y, Welsh WJ, Goddette DW, Heritage TW, Sheehan DM (1998) Evaluation of quantitative structure activity relationship methods for large-scale prediction of chemicals binding to the estrogen receptor. J Chem Inf Comput Sci 38(4):669–677PubMedCrossRefPubMedCentralGoogle Scholar
  123. Tsoi KM, Dai Q, Alman BA, Chan WCW (2012) Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc Chem Res 46:662–671PubMedCrossRefPubMedCentralGoogle Scholar
  124. Voit BI, Lederer A (2009) Hyperbranched and highly branched polymer architectures synthetic strategies and major characterization aspects. Chem Rev 109(11):5924–5973PubMedCrossRefPubMedCentralGoogle Scholar
  125. Wu SH, Chen DH (2004) Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273(1):165–169PubMedCrossRefPubMedCentralGoogle Scholar
  126. Xie XQS (2010) Exploiting PubChem for virtual screening. Expert Opin Drug Discovery 5(12):1205–1220CrossRefGoogle Scholar
  127. Yadav M, Bhatia VJ, Doshi G, Shastri K (2014) Novel techniques in herbal drug delivery systems. Int J Pharm Sci Rev Res 28:83–89Google Scholar
  128. Yadav L, Tripathi RM, Prasad R, Pudake RN, Mittal J (2017) Antibacterial activity of cu nanoparticles against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. Nano Biomed Eng 9(1):9–14.  https://doi.org/10.5101/nbe.v9i1.p9-14CrossRefGoogle Scholar
  129. Zadbuke N, Shahi S, Gulecha B, Padalkar A, Thube M (2013) Recent trends and future of pharmaceutical packaging technology. J Pharm Bioallied Sci 5(2):98PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zhan J, Ting XL, Zhu J (2017) The research progress of targeted drug delivery systems. IOP Conf Ser Mater Sci Eng 207(1):012017CrossRefGoogle Scholar
  131. Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, Li HB (2015) Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 20(12):21138–21156PubMedPubMedCentralCrossRefGoogle Scholar
  132. Zsoldos Z, Reid D, Simon A, Sadjad SB, Johnson AP (2007) eHiTS: a new fast, exhaustive flexible ligand docking system. J Mol Graph Model 26(1):198–212PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nidhi Saini
    • 1
  • Abhilasha Thakur
    • 1
  • Pawan Kaur
    • 1
  • Suresh Kumar Gahlawat
    • 1
  1. 1.Department of BiotechnologyChaudhary Devi Lal UniversitySirsaIndia

Personalised recommendations