Advertisement

Microencapsulation for Delivery of Probiotic Bacteria

  • Anil Panghal
  • Sundeep Jaglan
  • Neelesh Sindhu
  • V. Anshid
  • Manga Veera Sai Charan
  • Vinod Surendran
  • Navnidhi Chhikara
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

In this era of modernization and hectic lifestyles, consumers demand functional foods providing nutrients with physiological and health benefits. Probiotics belong to this in-demand category of functional and nutraceutical foods. Probiotics are selected viable microorganisms, administered in particular amounts, that provide numerous benefits. However, the viability of the microorganisms in harsh thermal processing, storage conditions, and the acid/bile conditions of the gastrointestinal tract is a major concern for the food industry. Microencapsulation technology can provide suitable carriers for probiotics to improve their viability and targeted release. Probiotic encapsulation technology can protect probiotic microorganisms from the hostile conditions of the digestive system. Research is under way to design suitable coating materials and technology for microcapsule preparation. This chapter discusses methods of microencapsulation and improvements in probiotic delivery in the human system.

Keywords

Gastrointestinal Encapsulation Microorganisms Probiotics 

References

  1. Ahmadi H, Wang Q, Lim LT, Balamurugan S (2018) Encapsulation of Listeria phage A511 by alginate to improve its thermal stability. In: MRJ C, Kropinski AM, Lavigne R (eds) Bacteriophages: methods and protocols, vol 3. Humana Press, New York, pp 89–95CrossRefGoogle Scholar
  2. Alting S, Zhaoping ZH (2015) Optimization of bioethanol production by Saccharomyces cerevisiae microencapsulated on alginate-delignified cellulose material. Int J Pharma Bio Sci 6(2):1259–1270Google Scholar
  3. Amine KM, Champagne CP, Salmieri S, Britten M, St-Gelais D, Fustier P, Lacroix M (2014) Effect of palmitoylated alginate microencapsulation on viability of Bifidobacterium longum during freeze-drying. LWT-Food Sci Technol 56(1):111–117CrossRefGoogle Scholar
  4. Anekella K, Orsat V (2013) Optimization of microencapsulation of probiotics in raspberry juice by spray drying. Lebenson Wiss Technol 50(1):17–24CrossRefGoogle Scholar
  5. Bampi GB, Backes GT, Cansian RL, de Matos FE, Ansolin IM, Poleto BC, Corezzolla LR, Favaro-Trindade CS (2016) Spray chilling microencapsulation of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis and its use in the preparation of savory probiotic cereal bars. Food Bioprocess Technol 9(8):1422–1428CrossRefGoogle Scholar
  6. Basholli-Salihu M, Mueller M, Salar-Behzadi S, Unger FM, Viernstein H (2014) Effect of lyoprotectants on β-glucosidase activity and viability of Bifidobacterium infantis after freeze-drying and storage in milk and low pH juices. Lebenson Wiss Technol 57(1):276–282CrossRefGoogle Scholar
  7. Bidoret A, Guihard L, Cauret L, Poncelet D (2017) Production of κ-carrageenan beads by prilling process. Can J Chem Eng 95(4):799–805CrossRefGoogle Scholar
  8. Boylston TD, Vinderola CG, Ghoddusi HB, Reinheimer JA (2004) Incorporation of bifidobacteria into cheeses: challenges and rewards. Int Dairy J 14(5):375–387CrossRefGoogle Scholar
  9. Brinques GB, Ayub MA (2011) Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. J Food Eng 103(2):123–128CrossRefGoogle Scholar
  10. Burgain J, Corgneau M, Scher J, Gaiani C (2015) Encapsulation of probiotics in milk protein microcapsules. In: LMC S (ed) Microencapsulation and microspheres for food applications. Academic, London, pp 391–406CrossRefGoogle Scholar
  11. Canizales JR, Rodríguez GR, Avila JA, Saldaña AM, Parrilla EA, Ochoa MA, Aguilar GA (2018) Encapsulation to protect different bioactives to be used as nutraceuticals and food ingredients. In: Mérillon J-M, Ramawat KG (eds) Bioactive molecules in food. Springer, Cham, pp 1–20Google Scholar
  12. Casarotti SN, Monteiro DA, Moretti MM, Penna AL (2014) Influence of the combination of probiotic cultures during fermentation and storage of fermented milk. Food Res Int 59:67–75CrossRefGoogle Scholar
  13. Chávarri M, Marañón I, Ares R, Ibáñez FC, Marzo F, Del C, Villarán M (2010) Microencapsulation of a probiotic and prebiotic in alginate–chitosan capsules improves survival in simulated gastro-intestinal conditions. Int J Food Microbiol 142(1–2):185–189PubMedCrossRefGoogle Scholar
  14. Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2012) Microencapsulation of probiotics for gastrointestinal delivery. J Control Release 162(1):56–67PubMedCrossRefGoogle Scholar
  15. De Araújo Etchepare M, Raddatz GC, Cichoski AJ, Flores ÉM, Barin JS, Zepka LQ, Jacob-Lopes E, Grosso CR, de Menezes CR (2016) Effect of resistant starch (Hi-Maize) on the survival of Lactobacillus acidophilus microencapsulated with sodium alginate. J Funct Foods 21:321–329CrossRefGoogle Scholar
  16. De Castro-Cislaghi FP, Carina Dos Reis ES, Fritzen-Freire CB, Lorenz JG, Sant’Anna ES (2012) Bifidobacterium Bb-12 microencapsulated by spray drying with whey: survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage. J Food Eng 113(2):186–193CrossRefGoogle Scholar
  17. De Lara Pedroso D, Thomazini M, Heinemann RJ, Favaro-Trindade CS (2012) Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. Int Dairy J 26(2):127–132CrossRefGoogle Scholar
  18. De Prisco A, Van Valenberg HJ, Fogliano V, Mauriello G (2017) Microencapsulated starter culture during yoghurt manufacturing, effect on technological features. Food Bioprocess Tech 10(10):1767–1777CrossRefGoogle Scholar
  19. Dinakar P, Mistry VV (1994) Growth and viability of Bifidobacterium bifidum in cheddar cheese. J Dairy Sci 77(10):2854–2864PubMedCrossRefGoogle Scholar
  20. Dolly P, Anishaparvin A, Joseph GS, Anandharamakrishnan C (2011) Microencapsulation of Lactobacillus plantarum (MTCC 5422) by spray-freeze-drying method and evaluation of survival in simulated gastrointestinal conditions. J Microencapsul 28(6):568–574PubMedCrossRefGoogle Scholar
  21. Eratte D, Dowling K, Barrow CJ, Adhikari B (2017) Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: a review. Trends Food Sci Technol 71:121–131CrossRefGoogle Scholar
  22. Fayed B, Abood A, El-Sayed HS, Hashem AM, Mehanna NS (2018) A synbiotic multiparticulate microcapsule for enhancing inulin intestinal release and Bifidobacterium gastro-intestinal survivability. Carbohydr Polym 193:137–143PubMedCrossRefGoogle Scholar
  23. Fazilah NF, Ariff AB, Khayat ME, Rios-Solis L, Halim M (2018) Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. J Funct Foods 48:387–399CrossRefGoogle Scholar
  24. Gardiner GE, Bouchier P, O’Sullivan E, Kelly J, Collins JK, Fitzgerald G, Ross RP, Stanton C (2002) A spray-dried culture for probiotic cheddar cheese manufacture. Int Dairy J 12(9):749–756CrossRefGoogle Scholar
  25. Gbassi GK, Vandamme T (2012) Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics 4(1):149–163PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gebara C, Chaves KS, Ribeiro MCE, Souza FN, Grosso CR, Gigante ML (2013) Viability of Lactobacillus acidophilus La5 in pectin–whey protein microparticles during exposure to simulated gastrointestinal conditions. Food Res Int 51(2):872–878CrossRefGoogle Scholar
  27. Gobetti JP, Türp JC (1998) Fibrosarcoma misdiagnosed as a temporomandibular disorder: a cautionary tale. Oral Surg Oral Med Oral Pathol Oral Radiol 85(4):404–409CrossRefGoogle Scholar
  28. Godward G, Kailasapathy K (2003) Viability and survival of free, encapsulated and co-encapsulated probiotic bacteria in ice cream. Milchwissenschaft 58(3–4):161–164Google Scholar
  29. Guignon B, Duquenoy A, Dumoulin ED (2002) Fluid bed encapsulation of particles: principles and practice. Dry Technol 20(2):419–447CrossRefGoogle Scholar
  30. Hamaguchi S, Zafar MA, Cammer M, Weiser JN (2018) Capsule prolongs survival of Streptococcus pneumoniae during starvation. Infect Immun.  https://doi.org/10.1128/IAI.00802-17
  31. Holkem AT, Raddatz GC, Barin JS, Flores ÉM, Muller EI, Codevilla CF, Jacob-Lopes E, Grosso CR, De Menezes CR (2017) Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT-Food Sci Technol 76:216–221CrossRefGoogle Scholar
  32. Homayouni A, Payahoo L, Azizi A (2012) Effects of probiotics on lipid profile: a review. Am J Food Technol 7(5):251–265CrossRefGoogle Scholar
  33. Iravani S, Korbekandi H, Mirmohammadi SV (2015) Technology and potential applications of probiotic encapsulation in fermented milk products. J Food Sci Technol 52(8):4679–4696PubMedCrossRefGoogle Scholar
  34. Kailasapathy K (2002) Microencapsulation of probiotic bacteria: technology and potential applications. Curr Issues Intest Microbiol 3(2):39–48PubMedGoogle Scholar
  35. Kailasapathy K, Masondole L (2005) Survival of free and microencapsulated Lactobacillus acidophilus and Bifidobacterium lactis and their effect on texture of feta cheese. Aust J Dairy Tech 60(3):252Google Scholar
  36. Kataria A, Achi SC, Halami PM (2018) Effect of encapsulation on viability of Bifidobacterium longum CFR815j and physiochemical properties of ice cream. Indian J Microbiol 58(2):248–251PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kavitake D, Kandasamy S, Devi PB, Shetty PH (2017) Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods—a review. Food Biosci 21:34–44CrossRefGoogle Scholar
  38. Krasaekoopt W, Bhandari B, Deeth HC (2006) Survival of probiotics encapsulated in chitosan-coated alginate beads in yoghurt from UHT-and conventionally treated milk during storage. Lebenson Wiss Technol 39(2):177–183CrossRefGoogle Scholar
  39. Maleki D, Azizi A, Vaghef E, Balkani S, Homayouni A (2015) Methods of increasing probiotic survival in food and gastrointestinal conditions. La Prensa Medica 101:4.  https://doi.org/10.4172/lpma.1000154CrossRefGoogle Scholar
  40. Martín MJ, Lara-Villoslada F, Ruiz MA, Morales ME (2015) Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innov Food Sci Emerg Technol 27:15–25CrossRefGoogle Scholar
  41. Mishra SS, Behera PK, Kar B, Ray RC (2018) Advances in probiotics, prebiotics and nutraceuticals. In: Panda SK, PKS H (eds) Innovations in technologies for fermented food and beverage industries. Springer, Cham, pp 121–141CrossRefGoogle Scholar
  42. Mortazavian A, Razavi SH, Ehsani MR, Sohrabvandi S (2007) Principles and methods of microencapsulation of probiotic microorganisms. Iran J Biotechnol 5(1):1–18Google Scholar
  43. Muthukumarasamy P, Holley RA (2006) Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. Int J Food Microbiol 111(2):164–169PubMedCrossRefGoogle Scholar
  44. Mutukumira AN, Ang J, Lee SJ (2015) Microencapsulation of probiotic bacteria. In: Liong MT (ed) Beneficial microorganisms in food and nutraceuticals. Springer, Cham, pp 63–80CrossRefGoogle Scholar
  45. Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B (2011) An overview of encapsulation technologies for food applications. Procedia Food Sci 1:1806–1815CrossRefGoogle Scholar
  46. Ong YX, Lee LY, Davoodi P, Wang CH (2018) Production of drug-releasing biodegradable microporous scaffold using a two-step micro-encapsulation/supercritical foaming process. J Supercrit Fluids 133:263–269CrossRefGoogle Scholar
  47. Ono M, Oka T (1980) The differential actions of cortisol on the accumulation of α-lactalbumin and casein in midpregnant mouse mammary gland in culture. Cell 19(2):473–480PubMedCrossRefGoogle Scholar
  48. Oxman T, Shapira M, Klein R, Avazov N, Rabinowitz B (2001) Oral administration of Lactobacillus induces cardioprotection. J Altern Complement Med 7(4):345–354PubMedCrossRefGoogle Scholar
  49. Ozer B, Uzun YS, Kirmaci HA (2008) Effect of microencapsulation on viability of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-12 during Kasar cheese ripening. Int J Dairy Technol 61(3):237–244CrossRefGoogle Scholar
  50. Ozer B, Kirmaci HA, Şenel E, Atamer M, Hayaloğlu A (2009) Improving the viability of Bifidobacterium bifidum BB-12 and Lactobacillus acidophilus LA-5 in white-brined cheese by microencapsulation. Int Dairy J 19(1):22–29CrossRefGoogle Scholar
  51. Panghal A, Janghu S, Virkar K, Gat Y, Kumar V, Chhikara N (2018) Potential non-dairy probiotic products—a healthy approach. Food Biosci 21:80–89CrossRefGoogle Scholar
  52. Parvez S, Malik KA, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Applmicrobiol 100(6):1171–1185Google Scholar
  53. Picot A, Lacroix C (2004) Encapsulation of bifidobacteria in whey protein–based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int Dairy J 14(6):505–515CrossRefGoogle Scholar
  54. Prakash KS, Chavan R, Mishra V (2016) Microencapsulation of probiotics and its applications. In Frontier Discoveries and Innovations in Interdisciplinary Microbiology, 33–44, Springer, New Delhi.CrossRefGoogle Scholar
  55. Prevost H, Divies C (1987) Fresh fermented cheese production with continuous pre fermented milk by a mixed culture of mesophilic lactic streptococci entrapped in calcium alginate. Biotechnol Lett 9(11):789–794CrossRefGoogle Scholar
  56. Ray S, Raychaudhuri U, Chakraborty R (2016) An overview of encapsulation of active compounds used in food products by drying technology. Food Biosci 13:76–83CrossRefGoogle Scholar
  57. Reed KK, Wickham R (2009) Review of the gastrointestinal tract: from macro to micro. Semin Oncol Nurs 25(1):3–14PubMedCrossRefGoogle Scholar
  58. Riaz QU, Masud T (2013) Recent trends and applications of encapsulating materials for probiotic stability. Crit Rev Food Sci Nutr 53(3):231–244PubMedCrossRefGoogle Scholar
  59. Rubio R, Jofré A, Martín B, Aymerich T, Garriga M (2014) Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages. Food Microbiol 38:303–311PubMedCrossRefGoogle Scholar
  60. Sanders ME, Tompkins T, Heimbach JT, Kolida S (2005) Weight of evidence needed to substantiate a health effect for probiotics and prebiotics. Eur J Nutr 44(5):303–310PubMedCrossRefGoogle Scholar
  61. Semyonov D, Ramon O, Shimoni E (2011) Using ultrasonic vacuum spray dryer to produce highly viable dry probiotics. LWT-Food Sci Technol 44(9):1844–1852CrossRefGoogle Scholar
  62. Shi LE, Li ZH, Zhang ZL, Zhang TT, Yu WM, Zhou ML, Tang ZX (2013) Encapsulation of Lactobacillus bulgaricus in carrageenan-locust bean gum coated milk microspheres with double layer structure. LWT-Food Sci Technol 54(1):147–151CrossRefGoogle Scholar
  63. Sobel R, Versic R, Gaonkar AG (2014) Introduction to microencapsulation and controlled delivery in foods. In: Gaonkar AG, Vasisht N, Khare AR, Sobel R (eds) Microencapsulation in the food industry: a practical implementation guide. Academic, Amsterdam, pp 3–12Google Scholar
  64. Sodini I, Boquien CY, Corrieu G, Lacroix C (1997) Use of an immobilized cell bioreactor for the continuous inoculation of milk in fresh cheese manufacturing. J Ind Microbiol Biotechnol 18(1):56–61PubMedCrossRefGoogle Scholar
  65. Sohail A, Turner MS, Coombes A, Bostrom T, Bhandari B (2011) Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. Int J Food Microbiol 145(1):162–168PubMedCrossRefGoogle Scholar
  66. Sohail A, Turner MS, Prabawati EK, Coombes AG, Bhandari B (2012) Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products. Int J Food Microbiol 157(2):162–166PubMedCrossRefGoogle Scholar
  67. Solanki HK, Pawar DD, Shah DA, Prajapati VD, Jani GK, Mulla AM, Thakar PM (2013) Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. Biomed Res Int 2013:1–21CrossRefGoogle Scholar
  68. Speranza B, Petruzzi L, Bevilacqua A, Gallo M, Campaniello D, Sinigaglia M, Corbo MR (2017) Encapsulation of active compounds in fruit and vegetable juice processing: current state and perspectives. J Food Sci 6:1291–1301CrossRefGoogle Scholar
  69. Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K (2000) Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol 62(1–2):47–55PubMedCrossRefGoogle Scholar
  70. Suvarna VC, Boby VU (2005) Probiotics in human health: a current assessment. Curr Sci 11:1744–1748Google Scholar
  71. Wang J, Korber DR, Low NH, Nickerson MT (2014) Entrapment, survival and release of Bifidobacterium adolescentis within chickpea protein–based microcapsules. Food Res Int 55:20–27CrossRefGoogle Scholar
  72. Weinbreck F, Bodnár I, Marco ML (2010) Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products? Int J Food Microbiol 136(3):364–367PubMedCrossRefGoogle Scholar
  73. Zaeim D, Sarabi-Jamab M, Ghorani B, Kadkhodaee R, Tromp RH (2018) Electrospray-assisted drying of live probiotics in acacia gum microparticles matrix. Carbohydr Polym 183:183–191PubMedCrossRefGoogle Scholar
  74. Zuidam NJ, Shimoni E (2010) Overview of microencapsulates for use in food products or processes and methods to make them. In: Zuidam NJ, Nedovic V (eds) Encapsulation technologies for active food ingredients and food processing. Springer, New York, pp 3–29CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anil Panghal
    • 1
    • 2
  • Sundeep Jaglan
    • 3
  • Neelesh Sindhu
    • 4
  • V. Anshid
    • 1
  • Manga Veera Sai Charan
    • 1
  • Vinod Surendran
    • 1
  • Navnidhi Chhikara
    • 1
  1. 1.Department of Food Technology and NutritionLovely Professional UniversityPhagwaraIndia
  2. 2.AICRP-PHET, Department of Processing and Food EngineeringChaudhary Charan Singh Haryana Agricultural UniversityHaryanaIndia
  3. 3.Division of Microbial BiotechnologyCSIR-Indian Institute of Integrative MedicineJammuIndia
  4. 4.Department of Veterinary Clinical ComplexLala Lajpat Rai University of Veterinary and Animal ScienceHisarIndia

Personalised recommendations