Nanotechnology: A Successful Approach to Improve Nutraceutical Bioavailability

  • Sneh Punia
  • Kawaljit Singh Sandhu
  • Maninder Kaur
  • Anil Kumar Siroha
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Nutraceuticals are foods and food constituents that provide health benefits beyond basic nutrition. Most biologically active constituents—such as flavonoids, tannins, and terpenoids—are highly soluble in water but have low absorption because they are unable to cross the lipid membranes of the cells, have an excessively large molecular size, or are poorly absorbed, resulting in loss of bioavailability and efficacy. Nanotechnology provides an opportunity for new perspectives in all scientific and technological fields. Recent developments in nanoscience and nanotechnology are aimed at novel and innovative applications in the food sector; these initiatives are rather recent in comparison with the established use of nanotechnology in biomedical and pharmaceutical applications. Among these applications, nutraceuticals represent a fast-growing field in nanoresearch. It has been widely proposed to combine nutraceuticals with nanotechnology because nanostructured systems may be able to potentiate the action of plant extracts, reducing the required dose and side effects, and improving activity. The common biocompatible and biodegradable nanoparticles include nanoliposomes, nanoemulsions, lipid nanocarriers, micelles, and poly (lactide-co-glycolic acid) (PLGA) nanoparticles. The rapid growth of nutraceutical nanotechnology carries great promise to provide new and effective functional foods as a tool for preventing and possibly even curing disease.


Nutraceuticals Bioavailability Liposomes Nanoemulsion Micelles Nanocarriers 


  1. Abdollahi S, Lotfipour F (2012) PLGA- and PLA-based polymeric nanoparticles for antimicrobial drug delivery. Biomed Int 3:1–11Google Scholar
  2. Aboalnaja KO, Yaghmoor S, Kumosani TA, McClements DJ (2016) Utilization of nanoemulsions to enhance bioactivity of pharmaceuticals, supplements, and nutraceuticals: nanoemulsion delivery systems and nanoemulsion excipient systems. Expert Opin Drug Deliv 13:1327–1336PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ahmed K, Li Y, McClements DJ, Xiao H (2012) Nanoemulsion- and emulsion-based delivery systems for curcumin: encapsulation and release properties. Food Chem 132:799–807CrossRefGoogle Scholar
  4. Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59:478–490PubMedCrossRefPubMedCentralGoogle Scholar
  5. Asha Rani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290CrossRefGoogle Scholar
  6. Astete CE, Sabliov CM (2006) Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed 17:247–289PubMedCrossRefPubMedCentralGoogle Scholar
  7. Azeem A, Rizwan M, Ahmad FJ, Iqbal Z, Khar RK, Aqil M, Talegaonkar S (2009) Nanoemulsion components screening and selection: a technical note. AAPS PharmSciTech 10:69–76PubMedPubMedCentralCrossRefGoogle Scholar
  8. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. Scholar
  9. Bailly N, Thomas M, Klumperman B (2012) Poly(N-vinylpyrrolidone)-block-poly(vinyl acetate) as a drug delivery vehicle for hydrophobic drugs. Biomacromolecules 13:4109–4117PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bennet D, Kim S (2014) Polymer nanoparticles for smart drug delivery. In: Sezer AD (ed) Application of nanotechnology in drug delivery. InTechOpen. Scholar
  11. Bhattacharyya S, Kudgus R, Bhattacharya R, Mukherjee P (2011) Inorganic nanoparticles in cancer therapy. Pharm Res 28:237–259PubMedCrossRefPubMedCentralGoogle Scholar
  12. Croy SR, Kwon GS (2006) Polymeric micelles for drug delivery. Curr Pharm Des 12:4669–4684PubMedCrossRefPubMedCentralGoogle Scholar
  13. Des Rieux A, Fievez V, Garinot M, Schneider YJ, Preat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27PubMedCrossRefPubMedCentralGoogle Scholar
  14. Dufès C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177–2202PubMedCrossRefPubMedCentralGoogle Scholar
  15. Fang JY, Hung CF, Hwang TL, Huang YL (2005) Physicochemical characteristics and in vivo deposition of liposome-encapsulated tea catechins by topical and intratumor administrations. J Drug Target 13:19–27PubMedCrossRefPubMedCentralGoogle Scholar
  16. Geetha T, Kapila M, Prakash O, Deol PK, Kakkar V, Kaur IP (2015) Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer. J Drug Target 23:159–169PubMedCrossRefPubMedCentralGoogle Scholar
  17. Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43PubMedCrossRefPubMedCentralGoogle Scholar
  18. Gomez-Romero P (2001) Hybrid organic–inorganic materials: in search of synergic activity. Adv Mater 13:163–174CrossRefGoogle Scholar
  19. Han SB, Kwon SS, Jeong YM, Yu ER, Park SN (2014) Physical characterization and in vitro skin permeation of solid lipid nanoparticles for transdermal delivery of quercetin. Int J Cosmet Sci 36:588–597PubMedCrossRefPubMedCentralGoogle Scholar
  20. Hofheinz RD, Gnad-Vogt SU, Beyer U, Hochhaus A (2005) Liposomal encapsulated anti-cancer drugs. Anti-Cancer Drugs 16:691–707PubMedCrossRefPubMedCentralGoogle Scholar
  21. Hrapovic S, Liu Y, Male KB, Luong JHT (2004) Electrochemical biosensing platform using platinum nanoparticles and carbon nanotubes. Anal Chem 76:1083–1088PubMedCrossRefPubMedCentralGoogle Scholar
  22. Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2014) Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim Acta A Mol Biomol Spectrosc 117:801–804PubMedCrossRefPubMedCentralGoogle Scholar
  23. Jadhav C, Kate V, Payghan SA (2015) Investigation of effect of non-ionic surfactant on preparation of griseofulvin non-aqueous nanoemulsion. J Nanostruct Chem 5:107–113CrossRefGoogle Scholar
  24. Jhaveri AM, Torchilin VP (2014) Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol.
  25. Jo YJ, Kwon YJ (2014) Characterization of β-carotene nanoemulsions prepared by microfluidization technique. Food Sci Biotechnol 23:107–113CrossRefGoogle Scholar
  26. Jones M, Leroux J (1999) Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharmacol Biopharmacol 48:101–111CrossRefGoogle Scholar
  27. Kawashima Y (2001) Nanoparticulate systems for improved drug delivery. Adv Drug Deliv Rev 47:1–2PubMedCrossRefPubMedCentralGoogle Scholar
  28. Keller B (2001) Liposomes in nutrition. Trends Food Sci Technol 12:25–31CrossRefGoogle Scholar
  29. Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39:268–307CrossRefGoogle Scholar
  30. Khalil NM, Do Nascimento TCF, Casa DM (2013) Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloids Surf B Biointerfaces 101:353–360PubMedCrossRefPubMedCentralGoogle Scholar
  31. Khan S, Baboota S, Ali J, Khan S, Narang RS, Narang JK (2015) Nanostructured lipid carriers: an emerging platform for improving oral bioavailability of lipophilic drugs. Int J Pharm Investig 5:182–191PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kievit FM, Zhang M (2011) Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater 23:H217–H247PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kim DH, Martin DC (2006) Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials 27:3031–3037PubMedCrossRefPubMedCentralGoogle Scholar
  34. Kim BD, Na K, Choi HK (2005) Preparation and characterization of solid lipid nanoparticles (SLN) made of cacao butter and curdlan. Eur J Pharm Sci 24:199–205PubMedCrossRefGoogle Scholar
  35. Kim DH, Vitol EA, Liu J, Balasubramanian S, Gosztola DJ, Cohen EE, Novosad V, Rozhkova EA (2013) Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles. Langmuir 29:7425–7432PubMedCrossRefPubMedCentralGoogle Scholar
  36. Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Acta Biochim Pol 48:199–208PubMedPubMedCentralGoogle Scholar
  37. Klang V, Valenta C (2011) Lecithin-based nanoemulsions. J Drug Deliv Sci Technol 21:55–76CrossRefGoogle Scholar
  38. Kwon GS, Kataoka K (1995) Block-copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 16:295–309CrossRefGoogle Scholar
  39. Lee SC, Lee KE, Kim JJ, Lim SH (2005) The effect of cholesterol in the liposome bilayer on the stabilization of incorporated retinol. J Liposome Res 15:157–166PubMedCrossRefGoogle Scholar
  40. Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2011a) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24:135–141PubMedCrossRefGoogle Scholar
  41. Li X, Xu H, Chen ZS, Chen G (2011b) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. Scholar
  42. Lu Q, Li DC, Jiang GH (2011) Preparation of a tea polyphenol nanoliposome system and its physicochemical properties. J Agric Food Chem 59:13004–13011PubMedCrossRefPubMedCentralGoogle Scholar
  43. Lukyanov AN, Torchilin VP (2004) Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 56:1273–1289PubMedCrossRefPubMedCentralGoogle Scholar
  44. Ma QH, Kuang YZ, Hao XZ, Gu N (2009) Preparation and characterization of tea polyphenols and vitamin E loaded nanoscale complex liposome. J Nanosci Nanotechnol 9:1379–1383PubMedCrossRefPubMedCentralGoogle Scholar
  45. Madaan K, Kumar S, Poonia N, Lather V, Pandita D (2014) Dendrimers in drug delivery and targeting: drug–dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6:139–150PubMedPubMedCentralCrossRefGoogle Scholar
  46. Mahapatro A, Singh DK (2011) Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnol 9:1–11CrossRefGoogle Scholar
  47. Marsanasco M, Márquez AL, Wagner JR, Alonso SDV, Chiaramoni NS (2011) Liposomes as vehicles for vitamins E and C: an alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Res Int 44:3039–3046CrossRefGoogle Scholar
  48. Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM (2006) Nanoemulsions: formation, structure, and physical properties. J Phys Condens Matter 18:R635CrossRefGoogle Scholar
  49. McClements DJ (2010) Emulsion design to improve the delivery of functional lipophilic components. Annu Rev Food Sci Technol 1(1):241–269CrossRefGoogle Scholar
  50. McClements DJ (2011) Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7:2297–2316CrossRefGoogle Scholar
  51. McClements DJ (2012) Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8(6):1719–1729CrossRefGoogle Scholar
  52. McClements DJ (2013) Nanoemulsion-based oral delivery systems for lipophilic bioactive components: nutraceuticals and pharmaceuticals. Ther Deliv 4:841–857PubMedCrossRefGoogle Scholar
  53. McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51:285–330PubMedCrossRefGoogle Scholar
  54. Melo EP, Aires-Barros MR, Cabral JMS (2001) Reverse micelles and protein biotechnology. Biotechnol Annu Rev 7:87–129PubMedCrossRefPubMedCentralGoogle Scholar
  55. Muchow M, Maincent P, Muller RH (2008) Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev Ind Pharm 34:1394–1405PubMedCrossRefPubMedCentralGoogle Scholar
  56. Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50:161–177PubMedCrossRefPubMedCentralGoogle Scholar
  57. Müller RH, Runge S, Ravelli V, Mehnert W, Thünemann AF, Souto EB (2006) Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals. Int J Pharm 317:82–89PubMedCrossRefPubMedCentralGoogle Scholar
  58. Munin A, Edwards-Levy F (2011) Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 3:793–829PubMedPubMedCentralCrossRefGoogle Scholar
  59. Narayanan R, El-Sayed MA (2004) Shape dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett 4:1343–1348CrossRefGoogle Scholar
  60. Narayanan NK, Nargi D, Randolph C, Narayanan BA (2009) Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer 125:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  61. Nasr M, Nawaz S, Elhissi A (2012) Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization. Int J Pharm 436:611–616PubMedCrossRefPubMedCentralGoogle Scholar
  62. Neves AR, Lúcio M, Martins S, Lima JL, Reis S (2013) Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomedicine 8:177–187PubMedPubMedCentralCrossRefGoogle Scholar
  63. Nunes S, Madureira AR, Campos D, Sarmento B, Gomes AM, Pintado M, Reis F (2017) Solid lipid nanoparticles as oral delivery systems of phenolic compounds: overcoming pharmacokinetic limitations for nutraceutical applications. Crit Rev Food Sci Nutr 57:1863–1873PubMedPubMedCentralGoogle Scholar
  64. Odeh F, Al-Jaber H, Khater D (2014) Nanoflora—how nanotechnology enhanced the use of active phytochemicals. In: Sezer AD (ed) Application of nanotechnology in drug delivery. InTechOpen. Scholar
  65. Palmerston Mendes L, Pan J, Torchilin VP (2017) Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. Scholar
  66. Parhi R, Suresh P (2010) Production of solid lipid nanoparticles—drug loading and release mechanism. J Chem Pharm Res 2:211–227Google Scholar
  67. Patel HM, Ryman BE (1976) Oral administration of insulin by encapsulation within liposomes. FEBS Lett 62:60–63PubMedCrossRefPubMedCentralGoogle Scholar
  68. Pathak K, Raghuvanshi S (2015) Oral bioavailability: issues and solutions via nanoformulations. Clin Pharmacokinet 54:325–357PubMedCrossRefPubMedCentralGoogle Scholar
  69. Patil RS, Kokate MR, Kolekar SS (2012) Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. Spectrochem Acta A 91:234–238CrossRefGoogle Scholar
  70. Patri AK, Kukowska-Latallo JF, Baker JR (2005) Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 57:2203–2214PubMedCrossRefPubMedCentralGoogle Scholar
  71. Peres LB, Peres LB, de Araújo PHH, Sayer C (2016) Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids Surf B Biointerfaces 140:317–323CrossRefGoogle Scholar
  72. Pollini M, Paladini F, Catalno M, Taurino A, Licciulli A, Maffezzoli A, Sannio A (2011) Antibacterial coatings on haemodialysis catheters by photochemical deposition of silver nanoparticles. J Mater Sci Mater Med 22:2005–2012PubMedCrossRefPubMedCentralGoogle Scholar
  73. Polychniatou V, Tzia C (2014) Study of formulation and stability of co-surfactant free water–in–olive oil nano- and submicron emulsions with food grade non-ionic surfactants. J Am Oil Chem Soc 91:79–88CrossRefGoogle Scholar
  74. Pool H, Quintanar D, De Dios Figueroa J et al (2012) Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticle. J Nanomater 2012:86CrossRefGoogle Scholar
  75. Pool H, Mendoza S, Xiao H, McClements DJ (2013) Encapsulation and release of hydrophobic bioactive components in nanoemulsion-based delivery systems: impact of physical form on quercetin bioaccessibility. Food Funct 4:162–174PubMedCrossRefPubMedCentralGoogle Scholar
  76. Porras M, Solans C, Gonzalez C, Martínez A, Guinart A, Gutiérrez JM (2004) Studies of formation of W/O nano-emulsions. Colloids Surf A249:115–118CrossRefGoogle Scholar
  77. Porter CJH, Trevaskis NL, Charman WN (2007) Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 6:231–248PubMedCrossRefPubMedCentralGoogle Scholar
  78. Pouton CW, Porter CJH (2008) Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev 60:625–637PubMedCrossRefPubMedCentralGoogle Scholar
  79. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961, Scholar
  80. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  81. Prasad R, Pandey R, Varma A, Barman I (2017a) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. Wallingford: CAB, pp 53–70Google Scholar
  82. Prasad R, Bhattacharyya A, Nguyen QD (2017b) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. Scholar
  83. Prasad R, Kumar V and Kumar M (2017c) Nanotechnology: Food and Environmental Paradigm. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-4678-0)Google Scholar
  84. Qiu H, Rieger B, Gilbert R, Jerome R, Jerome C (2004) PLA-coated gold nanoparticles for leveling of PLA biocarriers. Chem Mater 16:850–856CrossRefGoogle Scholar
  85. Rizwanullah M, Amin S, Mir SR, Fakhri KU, Rizvi MMA (2018) Phytochemical based nanomedicines against cancer: current status and future prospects. J Drug Target 26(9):731–752. Scholar
  86. Rogers JA, Anderson KE (1998) The potential of liposomes in oral drug delivery. Crit Rev Ther Drug Carrier Syst 15:421–480PubMedCrossRefPubMedCentralGoogle Scholar
  87. Sahni JK (2012) Exploring delivery of nutraceuticals using nanotechnology. Int J Pharm Investig 2:53PubMedPubMedCentralCrossRefGoogle Scholar
  88. Salvia-Trujillo L, Qian C, Martin-Belloso O, McClements DJ (2013) Influence of particle size on lipid digestion and beta-carotene bioaccessibility in emulsions and nanoemulsions. Food Chem 141:1472–1480PubMedCrossRefPubMedCentralGoogle Scholar
  89. Sanna V, Roggio AM, Pala N et al (2015) Effect of chitosan concentration on PLGA microcapsules for controlled release and stability of resveratrol. Int J Biol Macromol 72:531–536PubMedCrossRefPubMedCentralGoogle Scholar
  90. Scheller KJ, Williams SJ, Lawrence AJ, Jarrott B, Djouma E (2014) An improved method to prepare an injectable microemulsion of the galanin-receptor 3 selective antagonist, SNAP 37889, using Kolliphor® HS 15. Methods X 1:212–216Google Scholar
  91. Sessa M, Balestrieri ML, Ferrari G, Servillo L, Castaldo D, D’Onofrio N et al (2014) Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chem 147:42–50PubMedCrossRefPubMedCentralGoogle Scholar
  92. Severino P, Andreani T, Macedo AS, Fangueiro JF, Santana MH, Silva AM, Souto EB (2011) Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J Drug Deliv 2012:1–10CrossRefGoogle Scholar
  93. Silva AC, Santos D, Ferreira DM, Lopes C (2012) Lipid-based nanocarriers as an alternative for oral delivery of poorly water-soluble drugs: peroral and mucosal routes. Curr Med Chem 19:4495–4510PubMedCrossRefPubMedCentralGoogle Scholar
  94. Singh H, Thompson A, Liu W, Corredig M (2012) Liposomes as food ingredients and nutraceutical delivery systems. In: Garti N, DJ MC (eds) Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Woodhead, Cambridge, pp 287–318. Scholar
  95. Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, Chourasia MK (2017) Nanoemulsion: concepts, development and applications in drug delivery. J Control Release 252:28–49PubMedCrossRefPubMedCentralGoogle Scholar
  96. Son KH, Hong JH, Lee JW (2016) Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomedicine 11:5163–5185PubMedPubMedCentralCrossRefGoogle Scholar
  97. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20PubMedCrossRefPubMedCentralGoogle Scholar
  98. Srinivasa-Gopalan S, Yarema KJ (2007) Nanotechnologies for the life sciences: dendrimers in cancer treatment and diagnosis, vol 7. Wiley, New YorkGoogle Scholar
  99. Tattersall M, Clarke S (2003) Developments in drug delivery: implications for cancer care. Curr Opin Oncol 15:293–299PubMedCrossRefPubMedCentralGoogle Scholar
  100. Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–172PubMedCrossRefPubMedCentralGoogle Scholar
  101. Torchilin VP (2005) Lipid-core micelles for targeted drug delivery. Curr Drug Deliv 2:319–327PubMedCrossRefPubMedCentralGoogle Scholar
  102. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16CrossRefGoogle Scholar
  103. Torchilin VP, Trubetskoy VS (1995) Which polymers can make nanoparticulate drug carriers long-circulating. Adv Drug Deliv Rev 16:141–155CrossRefGoogle Scholar
  104. Trombino S, Cassano R, Muzzalupo R, Pingitore A, Cione E, Picci N (2009) Stearyl ferulate-based solid lipid nanoparticles for the encapsulation and stabilization of β-carotene and α-tocopherol. Colloids Surf B72:181–187CrossRefGoogle Scholar
  105. Trombino S, Cassano R, Ferrarelli T, Barone E, Picci E, Mancuso C (2013) Trans-ferulic acid–based solid lipid nanoparticles and their antioxidant effect in rat brain microsomes. Colloids Surf B Biointerfaces 109:273–279PubMedCrossRefPubMedCentralGoogle Scholar
  106. Uner M, Yener G (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2:289–300PubMedPubMedCentralGoogle Scholar
  107. Vyas TK, Shahiwala A, Amiji MM (2008) Improved oral bioavailability and brain transport of saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm 347:93–101PubMedCrossRefPubMedCentralGoogle Scholar
  108. Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Design and optimization of a new self-nanoemulsifying drug delivery system. J Colloid Interface Sci 314:230CrossRefGoogle Scholar
  109. Wang X, Jiang Y, Wang YW, Huang MT, Ho CT, Huang Q (2008) Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem 108:419–424PubMedCrossRefPubMedCentralGoogle Scholar
  110. Wang M, Qin L, Li K, Zhu R, Wang W, Wang S (2012a) The improvement of the anticancer effect of a novel compound benzoic acid, 2-hydroxy-, 2-d-ribofuranosylhydrazide (BHR) loaded in solid lipid nanoparticles. AAPS Pharm Sci Tech 13:1348–1354CrossRefGoogle Scholar
  111. Wang W, Zhu R, Xie Q, Li A, Xiao Y, Li K et al (2012b) Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int J Nanomedicine 7:3667–3677PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wang S, Su R, Nie S et al (2014) Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem 25:363–376PubMedCrossRefPubMedCentralGoogle Scholar
  113. Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71:R107–R116CrossRefGoogle Scholar
  114. Wolinsky JB, Grinstaff MW (2008) Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 60:1037–1055PubMedCrossRefPubMedCentralGoogle Scholar
  115. Xu ZP, Zeng QH, Lu GQ, Yu AB (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040CrossRefGoogle Scholar
  116. Yang Y, McClements DJ (2013) Vitamin E bioaccessibility: influence of carrier oil type on digestion and release of emulsified alpha-tocopherol acetate. Food Chem 141:473–481PubMedCrossRefPubMedCentralGoogle Scholar
  117. Yokoyama M, Satoh A, Sakurai Y, Okano T, Matsumura Y, Kakizoe T, Kataoka K (1998) Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size. J Control Release 55:219–229PubMedCrossRefPubMedCentralGoogle Scholar
  118. Yu H, Huang Q (2012) Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J Agric Food Chem 60:5373–5379PubMedCrossRefPubMedCentralGoogle Scholar
  119. Yu A, Wang H, Wang J, Cao F, Gao Y, Cui J, Zhai G (2011) Formulation optimization and bioavailability after oral and nasal administration in rabbits of puerarin-loaded microemulsion. J Pharm Sci 100:933–941PubMedCrossRefPubMedCentralGoogle Scholar
  120. Zhang XW, Wu BJ (2015) Submicron lipid emulsions: a versatile platform for drug delivery. Curr Drug Metab 16:211–220PubMedCrossRefPubMedCentralGoogle Scholar
  121. Zhang T, Dong D, Lu D, Wang S, Wu B (2016) Cremophor EL–based nanoemulsion enhances transcellular permeation of emodin through glucuronidation reduction in UGT1A1-overexpressing MDCKII cells. Int J Pharm 501:190–198PubMedCrossRefPubMedCentralGoogle Scholar
  122. Zheng J, Li Y, Song M, Fang X, Cao Y, McClements DJ, Xiao H (2014) Improving intracellular uptake of 5-demethyltangeretin by food grade nanoemulsions. Food Res Int 62:98–103CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sneh Punia
    • 1
  • Kawaljit Singh Sandhu
    • 1
    • 2
  • Maninder Kaur
    • 3
  • Anil Kumar Siroha
    • 1
  1. 1.Department of Food Science and TechnologyChaudhary Devi Lal UniversitySirsaIndia
  2. 2.Department of Food Science and TechnologyMaharaja Ranjit Singh Punjab Technical UniversityBathindaIndia
  3. 3.Department of Food Science and TechnologyGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations