Advertisement

Emerging Trends in Nanobiosensor

  • Vinita Kumari
  • Sarushi Rastogi
  • Vasudha Sharma
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

The rapid growth of nanotechnology in recent years has led to the development of new nanomaterials like carbon nanotubes, inorganic quantum dots, nanowires, graphene, and metal nanoparticles; with altered chemical, electrical, optical and physical properties. Surface functionalization capacity, novel signal amplification strategies, new electronic, optical and chemical properties of nanoscale materials have brought newer dimensions in biosensing, resulting in the development of nanobiosensors.

These nanobiosensors have the features like enhancement in sensitivity, specificity, and stability, and thus providing possibilities of quick detection systems for very small concentration of analytes. The field of nanobiosensors is multidisciplinary in nature involving the researchers from biological science, material science, electronics, medical science, physics, and chemistry to develop a variety of nanobiosensors. Recently, there has been great progress in the field of nanomaterial-based biosensors which is being integrated with microfluidics to design miniaturized and easy-to-use devices.

Fabrication of these ultrasensitive, low-cost, and highly selective nanobiosensors can provide benefits to both nanotechnology and biosensor in diverse areas like clinical diagnosis, environmental monitoring, food analysis, forensic sciences, and agricultural monitoring systems.

With the advancement in nanobiosensor technology, it is making the way toward applications like point-of-care (POC) devices, biochips, drug delivery system, and lab on a chip (LOC) involving array of nanobiosensors for rapid screening of multiple number of analytes.

Keywords

Nanobiosensor Nanomaterial Nanotechnology LOC POC 

References

  1. Afsahi S, Lerner MB, Goldstein JM, Lee J, Tang X, Bagarozzi DA Jr, Goldsmith BR (2018) Novel graphene-based biosensor for early detection of Zika virus infection. Biosens Bioelectron 100:85–88PubMedCrossRefGoogle Scholar
  2. Agnihotri N, Chowdhury AD, De A (2015) Non-enzymatic electrochemical detection of cholesterol using β-cyclodextrin functionalized graphene. Biosens Bioelectron 63:212–217PubMedCrossRefGoogle Scholar
  3. Ali MA, Solanki PR, Srivastava S, Singh S, Agrawal VV, John R, Malhotra BD (2015) Protein functionalized carbon nanotubes-based smart lab-on-a-chip. ACS Appl Mater Interfaces 7(10):5837–5846PubMedCrossRefGoogle Scholar
  4. Ali S, Hassan A, Hassan G, Eun CH, Bae J, Lee CH, Kim IJ (2018) Disposable all-printed electronic biosensor for instantaneous detection and classification of pathogens. Sci Rep 8(1):5920PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aljabali AA, Hussein E, Aljumaili O, Al Zoubi M, Altrad B, Albatayneh K, Al-razaq MAA (2018) Rapid magnetic nanobiosensor for the detection of Serratia marcescens. In IOP Conference Series: Mater Sci Eng 305(1):012005CrossRefGoogle Scholar
  6. Altintas Z, Davis F, Scheller FW (2017) Applications of quantum dots in biosensors and diagnostics. Biosens Nanotechnol Appl Health Care Diagn 3:185–199Google Scholar
  7. Asnaashari M, Kenari RE, Farahmandfar R, Taghdisi SM, Abnous K (2018) Fluorescence quenching biosensor for acrylamide detection in food products based on double-stranded DNA and gold nanoparticles. Sens Actuators B Chem 265:339–345CrossRefGoogle Scholar
  8. Augustine R, Abraham AR, Kalarikkal N, Thomas S (2016) Monitoring and separation of food-borne pathogens using magnetic nanoparticles. In: Novel approaches of nanotechnology in food. Academic Press, UK, pp 271–312CrossRefGoogle Scholar
  9. Baldo S, Buccheri S, Ballo A, Camarda M, La Magna A, Castagna ME, Scalese S (2016) Carbon nanotube-based sensing devices for human Arginase-1 detection. Sens Bio-Sens Res 7:168–173CrossRefGoogle Scholar
  10. Bhattacharya M, Hong S, Lee D, Cui T, Goyal SM (2011) Carbon nanotube based sensors for the detection of viruses. Sens Actuators B Chem 155(1):67–74CrossRefGoogle Scholar
  11. Bhattacharyya D, Sarswat PK, Free ML (2017) Quantum dots and carbon dots based fluorescent sensors for TB biomarkers detection. Vacuum 146:606–613CrossRefGoogle Scholar
  12. Bolat G, Abaci S (2018) Non-enzymatic electrochemical sensing of malathion pesticide in tomato and apple samples based on gold nanoparticles-chitosan-ionic liquid hybrid nanocomposite. Sensors 18(3):773CrossRefGoogle Scholar
  13. Cash KJ, Clark HA (2010) Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 16(12):584–593PubMedPubMedCentralCrossRefGoogle Scholar
  14. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010a) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35(1):52–71CrossRefGoogle Scholar
  15. Choi YE, Kwak JW, Park JW (2010b) Nanotechnology for early cancer detection. Sensors 10(1):428–455PubMedCrossRefGoogle Scholar
  16. Chua CK, Pumera M (2013) Chemically modified graphenes as detectors in lab-on-chip device. Electroanalysis 25(4):945–950CrossRefGoogle Scholar
  17. Cihalova K, Hegerova D, Jimenez AM, Milosavljevic V, Kudr J, Skalickova S, Adam V (2017) Antibody-free detection of infectious bacteria using quantum dots-based barcode assay. J Pharm Biomed Anal 134:325–332PubMedCrossRefGoogle Scholar
  18. Claussen J, Medintz IL (2012) Using nanotechnology to improve lab on a chip devices. Biochip Tissue Chip 2(4):1609–1614Google Scholar
  19. Dasgupta NP, Sun J, Liu C, Brittman S, Andrews SC, Lim J, Yang P (2014) 25th anniversary article: semiconductor nanowires–synthesis, characterization, and applications. Adv Mater 26(14):2137–2184PubMedCrossRefGoogle Scholar
  20. Devi RV, Doble M, Verma RS (2015) Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens Bioelectron 68:688–698CrossRefGoogle Scholar
  21. Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assunção M, Baptista PV (2012) Noble metal nanoparticles for biosensing applications. Sensors 12(2):1657–1687PubMedCrossRefGoogle Scholar
  22. Eftekhari-Sis B, Karaminejad S, Malekan F, Araghi HY, Akbari A (2017) CdSe quantum dots based Nano-biosensor for detection of 185delAG mutation in BRCA1 gene, responsible for breast Cancer. J Inorg Organomet Polym Mater 27(6):1911–1917CrossRefGoogle Scholar
  23. Frasco MF, Chaniotakis N (2009) Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9(9):7266–7286PubMedCrossRefGoogle Scholar
  24. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191PubMedCrossRefGoogle Scholar
  25. Ghorab MA, Khalil MS (2015) Toxicological effects of organophosphates pesticides. Int J Environ Monit Anal 3:218–220Google Scholar
  26. Ghrera AS, Pandey CM, Ali MA, Malhotra BD (2015) Quantum dot-based microfluidic biosensor for cancer detection. Appl Phys Lett 106(19):193703CrossRefGoogle Scholar
  27. Han B, Zhang YL, Zhu L, Chen XH, Ma ZC, Zhang XL, Sun HB (2018) Direct laser scribing of AgNPs@ RGO biochip as a reusable SERS sensor for DNA detection. Sens Actuators B Chem 270:500–507CrossRefGoogle Scholar
  28. He S, Song B, Li D, Zhu C, Qi W, Wen Y, Fan C (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20(3):453–459CrossRefGoogle Scholar
  29. Hutter E, Maysinger D (2013) Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends Pharmacol Sci 34(9):497–507PubMedCrossRefGoogle Scholar
  30. Ibrahim and Saeed (2013) Carbon nanotubes- properties and applications: a review. Carbon Lett 14(3):131–144CrossRefGoogle Scholar
  31. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRefGoogle Scholar
  32. Jaishree V, Gupta PD (2012) Nanotechnology: a revolution in cancer diagnosis. Indian J Clin Biochem 27(3):214–220PubMedPubMedCentralCrossRefGoogle Scholar
  33. Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2017.05.011, in press
  34. Kumar VV, Anthony SP (2014) Silver nanoparticles based selective colorimetric sensor for Cd2+, Hg2+ and Pb2+ ions: tuning sensitivity and selectivity using co-stabilizing agents. Sens Actuators B Chem 191:31–36CrossRefGoogle Scholar
  35. Kwak YH, Choi DS, Kim YN, Kim H, Yoon DH, Ahn SS, Seo S (2012) Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens Bioelectron 37(1):82–87PubMedCrossRefGoogle Scholar
  36. Lee MH, Seong W, Lee S, Kim K (2012) Silicon nanowire based immunoassay for the detection of prostate cancer biomarkers. In Biomedical Engineering and Biotechnology (iCBEB), 2012 International Conference 1086–1088Google Scholar
  37. Liong M, Hoang AN, Chung J, Gural N, Ford CB, Min C, Toner M (2013) Magnetic barcode assay for genetic detection of pathogens. Nat Commun 4:1752PubMedPubMedCentralCrossRefGoogle Scholar
  38. Liu M, Jia C, Huang Y, Lou X, Yao S, Jin Q, Xiang J (2010) Highly sensitive protein detection using enzyme-labeled gold nanoparticle probes. Analyst 135(2):327–331PubMedCrossRefGoogle Scholar
  39. Liu B, Sun Z, Zhang X, Liu J (2013) Mechanisms of DNA sensing on graphene oxide. Anal Chem 85(16):7987–7993PubMedCrossRefGoogle Scholar
  40. Liu X, Yang W, Chen L, Jia J (2017) Three-dimensional copper foam supported CuO nanowire arrays: an efficient non-enzymatic glucose sensor. Electrochim Acta 235:519–526CrossRefGoogle Scholar
  41. Long Y, Zhang LF, Zhang Y, Zhang CY (2012) Single quantum dot based nanosensor for renin assay. Anal Chem 84(20):8846–8852PubMedCrossRefGoogle Scholar
  42. Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK (2013) Nanobiosensors: concepts and variations. ISRN Nanomater 2013:1–9CrossRefGoogle Scholar
  43. Mandal D, Nunna BB, Zhuang S, Rakshit S, Lee ES (2017) Carbon nanotubes based biosensor for detection of cancer antigens (CA-125) under shear flow condition. Nano-Struct Nano-Objects 15:180–185CrossRefGoogle Scholar
  44. Marques I, Pinto da Costa J, Justino C, Santos P, Duarte K, Freitas A, Rocha-Santos T (2017) Carbon nanotube field effect transistor biosensor for the detection of toxins in seawater. Int J Environ Anal Chem 97(7):597–605CrossRefGoogle Scholar
  45. Melzer K, Bhatt VD, Jaworska E, Mittermeier R, Maksymiuk K, Michalska A, Lugli P (2016) Enzyme assays using sensor arrays based on ion-selective carbon nanotube field-effect transistors. Biosens Bioelectron 84:7–14PubMedCrossRefGoogle Scholar
  46. Meshik X, Xu K, Dutta M, Stroscio MA (2014) Optical detection of lead and potassium ions using a quantum-dot-based aptamer nanosensor. IEEE Trans Nanobioscience 13(2):161–164PubMedCrossRefGoogle Scholar
  47. Mohammed AM, Rahim RA, Ibraheem IJ, Loong FK, Hisham H, Hashim U, Al-Douri Y (2014) Application of gold nanoparticles for electrochemical DNA biosensor. J Nanomater 13:1–7CrossRefGoogle Scholar
  48. Mostafalu P, Sonkusale S (2015) A high-density nanowire electrode on paper for biomedical applications. RSC Adv 5(12):8680–8687CrossRefGoogle Scholar
  49. Nguyen NH, Duong TG, Pham NT, Dao TC, Pham TN (2015) Synthesis and application of quantum dots-based biosensor. Adv Nat Sci Nanosci Nanotechnol 6(1):015015CrossRefGoogle Scholar
  50. Nikam AP, Mukesh PR, Haudhary SP (2014) Nanoparticles—an overview. J Drug Deliv Ther 3:1121–1127Google Scholar
  51. Norouzi M, Zarei Ghobadi M, Golmimi M, Mozhgani SH, Ghourchian H, Rezaee SA (2017) Quantum Dot-Based Biosensor for the Detection of Human T-Lymphotropic Virus-1. Anal Lett 50(15):2402–2411CrossRefGoogle Scholar
  52. Patolsky F, Zheng G, Lieber CM (2006) Nanowire sensors for medicine and the life sciences. Future Med 1:51–65Google Scholar
  53. Paul B, Tiwari A (2015) A brief review on the application of gold nanoparticles as sensors in multi dimensional aspects. J Environ Sci Toxicol Food Technol 1(4):01–07Google Scholar
  54. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi: 10.1002/wnan.1363PubMedPubMedCentralGoogle Scholar
  55. Quesada-González D, Merkoçi A (2018) Nanomaterial-based devices for point-of-care diagnostic applications. Chem Soc Rev 47(13):4697–4709PubMedCrossRefGoogle Scholar
  56. Rahman SFA, Yusof NA, Hashim U, Hushiarian RMN, Hamidon MN, Fathil MFM (2016) Enhanced sensing of dengue virus DNA detection using O2 plasma treated-silicon nanowire based electrical biosensor. Anal Chim Acta 942:74–85PubMedCrossRefGoogle Scholar
  57. Randviir EP, Brownson DA, Banks CE (2014) A decade of graphene research: production, applications and outlook. Mater Today 17(9):426–432CrossRefGoogle Scholar
  58. Rasheed PA, Sandhyarani N (2014) Graphene-DNA electrochemical sensor for the sensitive detection of BRCA1 gene. Sens Actuators B Chem 204:777–782CrossRefGoogle Scholar
  59. Rocha-Santos TAP (2014) Sensors and biosensors based on magnetic nanoparticles. TrAC Trends Anal Chem 62:28–36CrossRefGoogle Scholar
  60. Salvati E, Stellacci F, Krol S (2015) Nanosensors for early cancer detection and for therapeutic drug monitoring. Nanomedicine 10(23):3495–3512PubMedCrossRefGoogle Scholar
  61. Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A Mater Sci Process 69(3):255–260CrossRefGoogle Scholar
  62. Shelby T, Sulthana S, McAfee J, Banerjee T, Santra S (2017) Foodborne pathogen screening using magneto-fluorescent nanosensor: rapid detection of E. Coli O157: H7. J Vis Exp (JoVE) 127:1–7Google Scholar
  63. Shen F, Wang J, Xu Z, Wu Y, Chen Q, Li X, Zhu T (2012) Rapid flu diagnosis using silicon nanowire sensor. Nano Lett 12(7):3722–3730PubMedCrossRefGoogle Scholar
  64. Sirivisoot S, Pareta RA (2012) Orthopedic carbon nanotube biosensors for controlled drug delivery. In: Nanomedicine. Woodhead Publishing, UK, pp 149–179CrossRefGoogle Scholar
  65. Song D, Li Y, Lu X, Sun M, Liu H, Yu G, Gao F (2017) Palladium-copper nanowires-based biosensor for the ultrasensitive detection of organophosphate pesticides. Anal Chim Acta 982:168–175PubMedCrossRefGoogle Scholar
  66. Suvarnaphaet P, Pechprasarn S (2017) Graphene-based materials for biosensors: a review. Sensors 17(10):2161CrossRefGoogle Scholar
  67. Syedmoradi L, Daneshpour M, Alvandipour M, Gomez FA, Hajghassem H, Omidfar K (2017) Point of care testing: the impact of nanotechnology. Biosens Bioelectron 87:373–387PubMedCrossRefGoogle Scholar
  68. Tan J, Hao B, Wang C, Ren Y, Hao H, Yang R (2016) A gold nanoparticle-enhanced surface plasmon resonance aptasensor for the detection of 2, 4, 6-trinitrotoluene. J Forensic Sci Med 2(4):195CrossRefGoogle Scholar
  69. Thapa A, Soares AC, Soares JC, Awan IT, Volpati D, Melendez ME, Oliveira ON Jr (2017) Carbon nanotube matrix for highly sensitive biosensors to detect pancreatic cancer biomarker CA19-9. ACS Appl Mater Interfaces 9(31):25878–25886PubMedCrossRefGoogle Scholar
  70. Varshney K (2014) Carbon nanotubes: a review on synthesis, properties and applications. Int J Eng Res 2(4):660–677Google Scholar
  71. Rao TVN, Sukruthi SG, Raj G (2012) Biochip Technology- A gigantic Innovation. International Int J Emerg Technol Adv Eng 2:129–135Google Scholar
  72. Wang R, Ruan C, Kanayeva D, Lassiter K, Li Y (2008) TiO2 nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of Listeria monocytogenes. Nano Lett 8(9):2625–2631PubMedCrossRefGoogle Scholar
  73. Wang H, Zhang Y, Li H, Du B, Ma H, Wu D, Wei Q (2013) A silver–palladium alloy nanoparticle-based electrochemical biosensor for simultaneous detection of ractopamine, clenbuterol and salbutamol. Biosens Bioelectron 49:14–19PubMedCrossRefGoogle Scholar
  74. Wang H, Sugiarto S, Li T, Ang WH, Lee C, Pastorin G (2016) Advances in nanomaterials and their applications in point of care (POC) devices for the diagnosis of infectious diseases. Biotechnol Adv 34(8):1275–1288PubMedCrossRefGoogle Scholar
  75. Wen L, Qiu L, Wu Y, Hu X, Zhang X (2017) Aptamer-modified semiconductor quantum dots for biosensing applications. Sensors 17(8):1736CrossRefGoogle Scholar
  76. Xia N, Chen Z, Liu Y, Ren H, Liu L (2017) Peptide aptamer-based biosensor for the detection of human chorionic gonadotropin by converting silver nanoparticles-based colorimetric assay into sensitive electrochemical analysis. Sens Actuators B Chem 243:784–791CrossRefGoogle Scholar
  77. Xu H, Aguilar ZP, Wang A (2010) Quantum Dot-based Sensors for Proteins. ECS Trans 25(31):1–8CrossRefGoogle Scholar
  78. Yang M, Sun S, Kostov Y, Rasooly A (2010) Lab-on-a-chip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB). Lab Chip 10(8):1011–1017PubMedCrossRefGoogle Scholar
  79. Yang J, Strickler JR, Gunasekaran S (2012) Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes for dopamine sensing in meat samples. Nanoscale 4(15):4594–4602PubMedCrossRefGoogle Scholar
  80. Yue Z, Lisdat F, Parak WJ, Hickey SG, Tu L, Sabir N, Bigall NC (2013) Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl Mater Interfaces 5(8):2800–2814PubMedCrossRefGoogle Scholar
  81. Zeng X, Gao H, Pan D, Sun Y, Cao J, Wu Z, Pan Z (2015) Highly sensitive electrochemical determination of alfatoxin B1 using quantum dots-assembled amplification labels. Sensors 15(8):20648–20658PubMedCrossRefGoogle Scholar
  82. Zhang M, Liao C, Mak CH, You P, Mak CL, Yan F (2015) Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Sci Rep 5:8311PubMedPubMedCentralCrossRefGoogle Scholar
  83. Zhu Y, Hao Y, Adogla EA, Yan J, Li D, Xu K, Wang Q, Hone J, Lin Q (2016) A graphene-based affinity nanosensor for detection of low-charge and low-molecular-weight molecules. Nanoscale 8(11):5815–5819PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vinita Kumari
    • 1
  • Sarushi Rastogi
    • 2
  • Vasudha Sharma
    • 2
  1. 1.School of Engineering Sciences and TechnologyJamia HamdardIndia
  2. 2.Department of Food TechnologySchool of Interdisciplinary SciencesJamia HamdardIndia

Personalised recommendations