Nanotechnology Application in Agricultural Sector

  • Mahmoud Nasr
Part of the Nanotechnology in the Life Sciences book series (NALIS)


This chapter represents the recent applications of nanotechnology in the agricultural sector for efficient utilization of agricultural waste and improvement of farming practices. The first section describes the utilization of plant species in the synthesis of green and environmentally friendly nanoparticles. The second part illustrates the effective bioconversion of agricultural waste into CH4 gas via anaerobic digestion. This section includes the positive and opposite impacts of nanomaterial additives on the anaerobic digestion process as well as the recommendations required to improve the biogas production. Other sections demonstrate the recent utilization of nanomaterial, i.e., nanofertilizers, carriers of macro- and micronutrients, nanopesticides, and nanopriming, in the field of agriculture. These nanoparticles have found significant impacts on seed germination, root and shoot elongations, crop production, and foliar growth. The study objectives tend to illustrate the perspectives of plant-nanotechnology nexus regarding the environment, energy, and nutritional value of food.


Anaerobic digestion Nanofertilizers Nanoparticles phytosynthesis Nanopesticides Nanopriming 


  1. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2016) Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renew Energy 87:592–598CrossRefGoogle Scholar
  2. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2017) Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy 120:842–853CrossRefGoogle Scholar
  3. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319CrossRefGoogle Scholar
  4. Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sust Energ Rev 16:1462–1476CrossRefGoogle Scholar
  5. Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22CrossRefGoogle Scholar
  6. Delfani M, Firouzabadi M, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45(4):530–540CrossRefGoogle Scholar
  7. Dissanayake C, Chandrajith R (2009) Phosphate mineral fertilizers, trace metals and human health. J Natl Sci Found Sri Lanka 37(3):153–165CrossRefGoogle Scholar
  8. Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 24(15):11–23CrossRefGoogle Scholar
  9. Fawzy M, Nasr M, Adel S, Helmi S (2018) Regression model, artificial neural network, and cost estimation for biosorption of Ni(II)-ions from aqueous solutions by Potamogeton pectinatus. Int J Phytoremediation 20(4):321–329CrossRefGoogle Scholar
  10. Ganzoury M, Allam N (2015) Impact of nanotechnology on biogas production: a mini-review. Renew Sust Energ Rev 50:1392–1404CrossRefGoogle Scholar
  11. Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752CrossRefGoogle Scholar
  12. Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem 4:115CrossRefGoogle Scholar
  13. Guha T, Ravikumar KVG, Mukherjee A, Mukherjee A, Kundu R (2018) Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiol Biochem 127:403–413CrossRefGoogle Scholar
  14. Haghighi M, Teixeira da Silva J (2014) The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. J Crop Sci Biotechnol 17(4):201–208CrossRefGoogle Scholar
  15. Ho VA, Le PT, Nguyen TP, Nguyen CK, Nguyen VT, Tran NQ (2015) Silver core-shell nanoclusters exhibiting strong growth inhibition of plant-pathogenic fungi. J Nanomater 2015:7Google Scholar
  16. Husen A, Siddiqi K (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229CrossRefGoogle Scholar
  17. Hussein M, Yahaya A, Zainal Z, Kian L (2005) Nanocomposite-based controlled release formulation of an herbicide, 2,4-dichlorophenoxyacetate incapsulated in zinc–aluminium-layered double hydroxide. Sci Technol Adv Mater 6(8):956–962CrossRefGoogle Scholar
  18. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235CrossRefGoogle Scholar
  19. Kalteh M, Alipour ZT, Ashraf S, Aliabadi MM, Nosratabadi AF (2014) Effect of silica nanoparticles on Basil (Ocimum basilicum) under salinity stress. J Chem Health Risks (JCHR) 4(3):49–55Google Scholar
  20. Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV (2015) Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon 81:607–619CrossRefGoogle Scholar
  21. Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139CrossRefGoogle Scholar
  22. Lyu S, Wei X, Chen J, Wang C, Wang X, Pan D (2017) Titanium as a beneficial element for crop production. Front Plant Sci 8:597CrossRefGoogle Scholar
  23. Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK (2016) Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci Total Environ 573:1089–1102CrossRefGoogle Scholar
  24. Mahakham W, Sarmah A, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7:8263CrossRefGoogle Scholar
  25. Marchiol L (2018) Nanotechnology in agriculture: new opportunities and perspectives. Scholar
  26. Mattos B, Magalhaes W (2016) Biogenic nanosilica blended by nanofibrillated cellulose as support for slow-release of tebuconazole. J Nanopart Res 18:274CrossRefGoogle Scholar
  27. Mittal A, Chisti Y, Banerjee U (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356CrossRefGoogle Scholar
  28. Nasr M, Tawfik A, Ookawara S, Suzuki M, Kumari S, Bux F (2015) Continuous biohydrogen production from starch wastewater via sequential dark-photo fermentation with emphasize on maghemite nanoparticles. J Ind Eng Chem 21:500–506CrossRefGoogle Scholar
  29. Noonari A, Mahar R, Sahito A, Brohi K (2019) Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: effect of Fe3O4 nanoparticles on methane yield. Renew Energy 133:1046–1054CrossRefGoogle Scholar
  30. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide as an Antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980CrossRefGoogle Scholar
  31. Paret ML, Vallad GE, Averett DR, Jones JB, Olson SM (2013) Photocatalysis: effect of light-activated nanoscale formulations of TiO(2) on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103(3):228–236CrossRefGoogle Scholar
  32. Parveen A, Mazhari B, Rao S (2016) Impact of bio-nanogold on seed germination and seedling growth in Pennisetum glaucum. Enzym Microb Technol 95:107–111CrossRefGoogle Scholar
  33. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles:963961. Scholar
  34. Prasad R, Kumar V, Prasad K (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  35. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961,
  36. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014. Scholar
  37. Prasad R, Jha A and Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0)
  38. Qian K, Shi T, Tang T, Zhang S, Liu X, Cao Y (2011) Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchim Acta 173(1–2):51–57CrossRefGoogle Scholar
  39. Rai M, Yadav A, Gade A (2008) CRC 675—current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 28(4):277–284CrossRefGoogle Scholar
  40. Rai PK, Kumar V, Lee S, Raza N, Kim K-H, Ok YS, Tsang DCW (2018) Nanoparticle-plant interaction: implications in energy, environment, and agriculture. Environ Int 119:1–19CrossRefGoogle Scholar
  41. Raja K, Sowmya R, Sudhagar R, Moorthy PS, Govindaraju K, Subramanian KS (2019) Biogenic ZnO and Cu nanoparticles to improve seed germination quality in blackgram (Vigna mungo). Mater Lett 235:164–167CrossRefGoogle Scholar
  42. Rajesh S, Raja D, Rathi J, Sahayaraj K (2012) Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. malvacearum. J Biopest 5:119–128Google Scholar
  43. Raut W, Lakkakula R, Kolekar S, Mendhulkar D, Kashid B (2009) Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.). Curr Nanosci 5(1):117–122CrossRefGoogle Scholar
  44. Rico CM, Lee SC, Rubenecia R, Mukherjee A, Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). J Agric Food Chem 62:9669–9675CrossRefGoogle Scholar
  45. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683CrossRefGoogle Scholar
  46. Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Manowade KR, Mujeeb MA, Mundaragi AC, Jogaiah S, David M, Thimmappa SC, Prasad R, Harish ER (2017) Production of bionanomaterials from agricultural wastes. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd., Singapore, pp 33–58CrossRefGoogle Scholar
  47. Sayedena SV, Pilehvar B, Abrari-Vajari K, Zarafshar M, Eisvand HR (2018) Effects of seed nano-priming with multiwall carbon nanotubes (MWCNT) on seed germination and seedlings growth parameters of mountain ash (Sorbus luristanica Bornm.). Iran J For Poplar Res (IJFPR) 26(2):pe202–pe213Google Scholar
  48. Shanmugam C, Sivasubramanian G, Parthasarathi B, Baskaran K, Balachander R, Parameswaran VR (2016) Antimicrobial, free radical scavenging activities and catalytic oxidation of benzyl alcohol by nano-silver synthesized from the leaf extract of Aristolochia indica L.: a promenade towards sustainability. Appl Nanosci 6(5):711–723CrossRefGoogle Scholar
  49. Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9(1):289CrossRefGoogle Scholar
  50. Vithanage M, Seneviratne M, Ahmad M, Sarkar B, Ok YS (2017) Contrasting effects of engineered carbon nanotubes on plants: a review. Environ Geochem Health 39(6):1421–1439CrossRefGoogle Scholar
  51. Xiumei L, Fudao Z, Shuqing Z, Xusheng H, Rufang W, Zhaobin F, Yujun W (2005) Responses of peanut to nano-calcium carbonate. Plant Nutr Fertil Sci 11(3):385–389Google Scholar
  52. Yatim N, Shaaban A, Dimin M, Yusof F (2015) Statistical evaluation of the production of urea fertilizer-multiwalled carbon nanotubes using plackett burman experimental design. Procedia Soc Behav Sci 195:315–323CrossRefGoogle Scholar
  53. Yearla S, Padmasree K (2016) Exploitation of subabul stem lignin as a matrix in controlled release agrochemical nanoformulations: a case study with herbicide diuron. Environ Sci Pollut Res 23(18):18085–18098CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mahmoud Nasr
    • 1
  1. 1.Sanitary Engineering Department, Faculty of EngineeringAlexandria UniversityAlexandriaEgypt

Personalised recommendations