Use of Metallic Nanoparticles and Nanoformulations as Nanofungicides for Sustainable Disease Management in Plants

  • Imran Ul Haq
  • Siddra Ijaz
Part of the Nanotechnology in the Life Sciences book series (NALIS)


For plant protection, reliance on agrochemicals is not a sustainable measure, because of the inadequate bioavailability of their active ingredients. Use of synthetic fungicides in controlling plant fungal diseases is routine. The permeability and solubility of active compounds in fungicides determine their bioavailability. Extensive use of fungicides for disease management results in pollution and hazardous impacts on the ecosystem. In this era of modern technologies, nanotechnology provides a smart solution to this problem at the nanoscale level. Synthesis of nanoparticles through physical, chemical, and biological methods is an emergent field of nanotechnology. Nanoparticles are used in making different nanoformulations, nanoemulsions, and nanocapsules. Among all nanoparticles, use of metallic nanoparticles in formulating nanofungicides is common. These nanofungicides offer targeted delivery, enhanced bioavailability due to greater solubility and permeability, small doses, less dose-dependent toxicity, and controlled release. The kingdom Fungi is a diverse group of organisms, and synthetic fungicides are not always effective against all phytopathogenic fungi. Thus, in this scenario, nanoparticles can be used as alternative control measures because of their ability to permeate through biomembranes and their large surface areas, which are attributed to their extremely small size. Among metallic nanoparticles, silver nanoparticles have strong antifungal potential. Silver ions inactivate thiol groups in the fungal cell wall, resulting in cell lysis and DNA mutation, thereby disrupting membrane processes (such as the membrane electron transport chain and transmembrane energy metabolism) and dissociating enzyme complexes, and ultimately blocking the respiratory chain in the fungus. The relationship between the size of nanoparticles and their efficiency and antifungal potential is an inverse one. This chapter provides comprehensive knowledge of nanoparticles, metallic nanoparticles, nanoformulations, nanofungicides, and their roles in disease management in plants. It also provides insight into the miraculous properties of these particles at the nanoscale.


Nanoformulations Nanofungicides Nanoparticles Nanoemulsions 


  1. Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: A novel tool for a green biotechnology? In: Fungal Nanobionics: Principles and Applications (eds. Prasad R, Kumar V, Kumar M and Wang S), Springer Singapore Pte Ltd. 61–87Google Scholar
  2. Abd-Elsalam KA (2012) Nanoplatforms for plant pathogenic fungi management. Fungal Genomics Biol 2:107CrossRefGoogle Scholar
  3. Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology applications in plant protection. Springer, Cham. Scholar
  4. Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3(3):43–55Google Scholar
  5. Agrios GN (2005) Plant pathology. Elsevier Academic, San DiegoGoogle Scholar
  6. Aguilar-Mendez MA, San Martin Martinez E, Ortega Arroyo L, Cobian Portillo G, Sánchez Espindola E (2011) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 13(6):2525–2532CrossRefGoogle Scholar
  7. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1(1):47–53CrossRefGoogle Scholar
  8. Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–236PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ali EA, Yuri NG, Ray HB (2011) Mirage effect from thermally modulated transparent carbon nanotube sheets. Nanotechnology 22(43):435704CrossRefGoogle Scholar
  10. Alvarez-Puebla RA, Dos Santos DS Jr, Aroca RF (2004) Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols. Analyst 129(12):1251–1256PubMedCrossRefPubMedCentralGoogle Scholar
  11. Anjali CH, Khan SS, Margulis-Goshen K, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73(8):1932–1936PubMedCrossRefGoogle Scholar
  12. Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion: a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68(2):158–163PubMedCrossRefGoogle Scholar
  13. Antisari LV, Carbone S, Ferronato C, Simoni A, Vianello G (2011) Characterization of heavy metals atmospheric deposition for assessment of urban environmental quality in the Bologna city (Italy). EQA Int J Environ Qual 7(7):49–63Google Scholar
  14. Anton N, Benoit JP, Saulnier P (2008) Design and production of nanoparticles formulated from nano-emulsion templates: a review. J Control Release 128:185–199PubMedCrossRefGoogle Scholar
  15. Aromal SA, Philip D (2012) Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta A Mol Biomol Spectrosc 97:1–5CrossRefGoogle Scholar
  16. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584PubMedCrossRefPubMedCentralGoogle Scholar
  17. Avasare V, Zhang Z, Avasare D, Khan I, Qurashi A (2015) Room-temperature synthesis of TiO2 nanospheres and their solar driven photoelectrochemical hydrogen production. Int J Energy Res 39(12):1714–1719CrossRefGoogle Scholar
  18. Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, Mecking S (2002) Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun 24:3018–3019CrossRefGoogle Scholar
  19. Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart 2014:689419. Scholar
  20. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. Scholar
  21. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis–derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. Scholar
  22. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. doi: 10.3389/fchem.2019.00065Google Scholar
  23. Badami BV (2008) Concept of green chemistry. Resonance 13(11):1041–1048CrossRefGoogle Scholar
  24. Baier-Anderson C (2009) Regulating nanosilver as a pesticide. Environmental Defense Fund. Accessed
  25. Bali R, Razak N, Lumb A, Harris AT (2006) The synthesis of metallic nanoparticles inside live plants. In: Proceedings of the 2006 international conference on nanoscience and nanotechnology, Brisbane, 3–7 July 2006. Scholar
  26. Banik S, Sharma P (2011) Plant pathology in the era of nanotechnology. Indian Phytopathol 64(2):120–127Google Scholar
  27. Barazzouk S, Kamat PV, Hotchandani S (2005) Photoinduced electron transfer between chlorophyll and gold nanoparticles. J Phys Chem B 109:716–723PubMedCrossRefPubMedCentralGoogle Scholar
  28. Barrak H, Saied T, Chevallier P, Laroche G, M’nif A, Hamzaoui AH (2016) Synthesis, characterization, and functionalization of ZnO nanoparticles by N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (TMSEDTA): investigation of the interactions between phloroglucinol and ZnO@TMSEDTA. Arab J Chem.
  29. Battke F, Leopold K, Maier M, Schmidhalter U, Schuster M (2008) Palladium exposure of barley: uptake and effects. Plant Biol 10:272–276PubMedCrossRefPubMedCentralGoogle Scholar
  30. Bawaskar M, Gaikwad S, Ingle A, Rathod D, Gade A, Duran N, Rai M (2010) A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr Nanosci 6(4):376–380CrossRefGoogle Scholar
  31. Bergeson LL (2010) Nanosilver pesticide products: what does the future hold? Environ Qual Manag 19(4):73–82CrossRefGoogle Scholar
  32. Bernardes PC, Nélio JDA, Nilda de Fátima FS (2014) Nanotechnology in the food industry. Biosci J 30(6):1919–1932Google Scholar
  33. Bhagat D, Samanta SK, Bhattacharya S (2013) Efficient management of fruit pests by pheromone nanogels. Sci Rep 3:1294PubMedPubMedCentralCrossRefGoogle Scholar
  34. Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nanoparticles: a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493Google Scholar
  35. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 307–319CrossRefGoogle Scholar
  36. Bonde SR, Rathod DP, Ingle AP, Ade RB, Gade AK, Rai MK (2012) Murraya koenigii–mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria. Nanosci Methods 1(1):25–36CrossRefGoogle Scholar
  37. Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34(2):125–155CrossRefGoogle Scholar
  38. Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12(18):2163–2175PubMedCrossRefGoogle Scholar
  39. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, Sips AJ (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62PubMedCrossRefGoogle Scholar
  40. Boxi SS, Paria S (2015) Visible light induced enhanced photocatalytic degradation of organic pollutants in aqueous media using Ag doped hollow TiO2 nanospheres. RSC Adv 5(47):37657–37668CrossRefGoogle Scholar
  41. Brecht M, Datnoff L, Nagata R, Kucharek T (2003) The role of silicon in suppressing tray leaf spot development in St. Augustine grass. University of Florida, GainesvilleGoogle Scholar
  42. Brecht MO, Datnoff LE, Kucharek TA, Nagata RT (2004) Influence of silicon and chlorothalonil on the suppression of gray leaf spot and increase plant growth in St. Augustine grass. Plant Dis 88(4):338–344PubMedCrossRefGoogle Scholar
  43. Brunel F, El Gueddari NE, Moerschbacher BM (2013) Complexation of copper(II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92(2):1348–1356PubMedCrossRefGoogle Scholar
  44. Bujak N, Czechowski D, Piatkowski R (2011) Fluorescence enhancement of light-harvesting complex 2 from purple bacteria coupled to spherical gold nanoparticles. Appl Phys Lett 99:173701–173703CrossRefGoogle Scholar
  45. Campos EVR, De Oliveira JL, Da Silva CMG, Pascoli M, Pasquoto T, Lima R, Fraceto LF (2015) Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Sci Rep 5:13809PubMedPubMedCentralCrossRefGoogle Scholar
  46. Carver TLW, Thomas BJ, Robbins MP, Zeyen RJ (1998) Phenylalanine ammonia-lyase inhibition, autofluorescence, and localized accumulation of silicon, calcium and manganese in oat epidermis attacked by the powdery mildew fungus Blumeria graminis (DC) Speer. Physiol Mol Plant Pathol 52(4):223–243. Scholar
  47. Castro ML, Ojeda C, Cirelli A (2013) Advances in surfactants for agrochemicals. Environ Chem Lett 1–11Google Scholar
  48. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22(2):577–583PubMedCrossRefPubMedCentralGoogle Scholar
  49. Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22(11):585–594CrossRefGoogle Scholar
  50. Chen L, Song Y, Tang B, Song X, Yang H, Li B, Zhao Y, Huang C, Han X, Wang S, Li Z (2015) Aquatic risk assessment of a novel strobilurin fungicide: a microcosm study compared with the species sensitivity distribution approach. Ecotoxicol Environ Saf. Scholar
  51. Chhipa H (2017) Nanopesticide: current status and future possibilities. Agric Res Technol Open Access J 5:1Google Scholar
  52. Choudhury SR, Ghosh M, Mandal A, Chakravorty D, Pal M, Pradhan S, Goswami A (2011) Surface-modified sulfur nanoparticles: an effective antifungal agent against Aspergillus niger and Fusarium oxysporum. Appl Microbiol Biotechnol 90(2):733–743PubMedCrossRefGoogle Scholar
  53. Choudhury SR, Pradhan S, Goswami A (2012) Preparation and characterisation of acephate nano-encapsulated complex. Nanosci Methods 1(1):9–15CrossRefGoogle Scholar
  54. Chowdappa P, Gowda S (2013) Nanotechnology in crop protection: status and scope. Pest Manag Hortic Ecosyst 19(2):131–151Google Scholar
  55. Chowdappa P, Kumar NB, Madhura S, Kumar MS, Myers KL, Fry WE, Cooke DE (2013) Emergence of 13_A2 blue lineage of Phytophthora infestans was responsible for severe outbreaks of late blight on tomato in South-West India. J Phytopathol 161(1):49–58CrossRefGoogle Scholar
  56. Chuan L, He P, Pampolino MF, Johnston AM, Jin J, Xu X, Zhou W (2013) Establishing a scientific basis for fertilizer recommendations for wheat in China: yield response and agronomic efficiency. Field Crop Res 140:1–8CrossRefGoogle Scholar
  57. Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG, Tantillo G, Traversa E (2004) Antifungal activity of polymer-based copper nanocomposite coatings. Appl Phys Lett 85(12):2417–2419CrossRefGoogle Scholar
  58. Clement JL, Jarrett PS (1994) Antibacterial silver. Metal-Based Drugs 1(5–6):467–482PubMedPubMedCentralCrossRefGoogle Scholar
  59. Corredor E, Testillano PS, Coronado MJ, Gonzalez Melendi P, Fernandez Pacheco R, Marquina C, Risueno MC (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9(1):45PubMedPubMedCentralCrossRefGoogle Scholar
  60. Dar MA, Ingle A, Rai M (2013) Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine 9(1):105–110PubMedCrossRefGoogle Scholar
  61. Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84(1):99–105CrossRefGoogle Scholar
  62. Dhekney S, Li A, Anaman M, Dutt M, Tattersall J, Gray D (2007) Genetic transformation of embryogenic cultures and recovery of transgenic plants in Vitis vinifera, Vitis rotundifolia and Vitis hybrids. Acta Hortic 738:743–748CrossRefGoogle Scholar
  63. Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32(1):49–73PubMedCrossRefPubMedCentralGoogle Scholar
  64. Díaz-Blancas V, Medina DI, Padilla-Ortega E, Bortolini-Zavala R, Olvera-Romero M, Luna-Bárcenas G (2016) Nanoemulsion formulations of fungicide tebuconazole for agricultural applications. Molecules 21(10):1271PubMedCentralCrossRefGoogle Scholar
  65. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779PubMedCrossRefPubMedCentralGoogle Scholar
  66. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822–828PubMedCrossRefPubMedCentralGoogle Scholar
  67. Dubchak S, Ogar A, Mietelski JW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 8(1):103–108. Scholar
  68. Dubey M, Bhadauria S, Kushwah BS (2009) Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (Safeda) leaf. Dig J Nanomater Biostruct 4(3):537–543Google Scholar
  69. Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23CrossRefGoogle Scholar
  70. Dzhavakhiya V, Shcherbakova L, Semina Y, Zhemchuzhina N, Campbell B (2012) Chemosensitization of plant pathogenic fungi to agricultural fungicides. Front Microbiol 3:1–9CrossRefGoogle Scholar
  71. EstebanTejeda L, Malpartida F, Esteban Cubillo A, Pecharroman C, Moya JS (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20(50):505701CrossRefGoogle Scholar
  72. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5(4):382–386PubMedCrossRefPubMedCentralGoogle Scholar
  73. Gan PP, Ng SH, Huang Y, Li SFY (2012) Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach. Bioresour Technol 113:132–135PubMedCrossRefPubMedCentralGoogle Scholar
  74. Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401CrossRefGoogle Scholar
  75. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803PubMedCrossRefPubMedCentralGoogle Scholar
  76. Gogoi R, Dureja P, Singh PK (2009) Nanoformulations—a safer and effective option for agrochemicals. Indian Farming 59(8):7–12Google Scholar
  77. Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M (2014) Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 98:8083–8097PubMedCrossRefPubMedCentralGoogle Scholar
  78. Gong P, Li H, He X, Wang K, Hu J, Tan W, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18(28):285604CrossRefGoogle Scholar
  79. González-Fernández R, Prats E, Jorrín-Novo JV (2010) Proteomics of plant pathogenic fungi. J Biomed Biotechnol 2010:932527. Scholar
  80. Gruère GP (2012) Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy 37(2):191–198CrossRefGoogle Scholar
  81. Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3(9):1261–1263CrossRefGoogle Scholar
  82. Guillette LJ, Iguchi T (2012) Life in a contaminated world. Science 337(6102)):1614–1615PubMedCrossRefPubMedCentralGoogle Scholar
  83. Gul HT, Saeed S, Khan FZA, Manzoor SA (2014) Potential of nanotechnology in agriculture and crop protection: a review. Appl Sci Bus Econ 1(2):23–28Google Scholar
  84. Gupta A, Maynes M, Silver S (1998) Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl Environ Microbiol 64(12):5042–5045PubMedPubMedCentralGoogle Scholar
  85. Gupta K, Singh RP, Pandey A, Pandey A (2013) Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus, P. aeruginosa and E. coli. Beilstein J Nanotechnol 4:345PubMedPubMedCentralCrossRefGoogle Scholar
  86. Gupta N, Upadhyaya CP, Singh A, Abd-Elsalam KA, Prasad R (2018) Applications of silver nanoparticles in plant protection. In: Nanobiotechnology Applications in Plant Protection (eds. Abd-Elsalam K and Prasad R), Springer International Publishing AG 247–266Google Scholar
  87. Hettiarachchi MA, Wickramarachchi PASR (2011) Synthesis of chitosan stabilized silver nanoparticles using gamma ray irradiation and characterization. J Sci 6:65–75Google Scholar
  88. Hezave AZ, Esmaeilzadeh F (2010) Crystallization of micro particles of sulindac using rapid expansion of supercritical solution. J Cryst Growth 312(22):3373–3383CrossRefGoogle Scholar
  89. Holt KB, Bard AJ (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44(39):13214–13223PubMedCrossRefPubMedCentralGoogle Scholar
  90. Huang H, Yang X (2004) Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res 339(15):2627–2631PubMedCrossRefPubMedCentralGoogle Scholar
  91. Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4(6):746–750PubMedCrossRefPubMedCentralGoogle Scholar
  92. Ingham B (2015) X-ray scattering characterisation of nanoparticles. Crystallogr Rev 21(4):229–303CrossRefGoogle Scholar
  93. Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11(8):2079CrossRefGoogle Scholar
  94. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650CrossRefGoogle Scholar
  95. Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer, Singapore, pp 305–317CrossRefGoogle Scholar
  96. Jampílek J, Kráľová K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S 22:321–361Google Scholar
  97. Jha AK, Prasad K (2010) Green synthesis of silver nanoparticles using Cycas leaf. Int J Green Nanotechnol Phys Chem 1(2):110–117CrossRefGoogle Scholar
  98. Jha Z, Behar N, Sharma SN, Chandel G, Sharma DK, Pandey MP (2011) Nanotechnology: prospects of agricultural advancement. Nano Vision 1(2):88–100Google Scholar
  99. Jiang LC, Basri M, Omar D, Rahman MBA, Salleh AB, Rahman RNZRA, Selamat A (2012) Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pestic Biochem Physiol 102(1):19–29CrossRefGoogle Scholar
  100. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043PubMedCrossRefPubMedCentralGoogle Scholar
  101. Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver–carbon composite materials for optically functional thin-film coatings. Adv Mater 12(6):407–409CrossRefGoogle Scholar
  102. Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45(3):245–279CrossRefGoogle Scholar
  103. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235CrossRefGoogle Scholar
  104. Kasthuri J, Kathiravan K, Rajendiran N (2009) Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanopart Res 11(5):1075–1085CrossRefGoogle Scholar
  105. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15(6):1692CrossRefGoogle Scholar
  106. Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13(3):214–231CrossRefGoogle Scholar
  107. Khan MR, Majid S, Mohidin FA, Khan N (2011) A new bioprocess to produce low cost powder formulations of biocontrol bacteria and fungi to control fusarial wilt and root-knot nematode of pulses. Biol Control 59(2):130–140CrossRefGoogle Scholar
  108. Khan MR, Jairajpuri MS (2012) Nematode infestation in horticultural crops, national scenario. In: Khan MR, Jairajpuri MS (eds) Nematode infestation part III: horticultural crops. National Academy of Sciences, India, pp 1–30Google Scholar
  109. Khan MR, Ashraf S, Rasool F, Salati KM, Mohiddin FA, Haque Z (2014) Field performance of Trichoderma species against wilt disease complex of chickpea caused by Fusarium oxysporum f. sp. ciceri and Rhizoctonia solani. Turk J Agric For 38(4):447–454CrossRefGoogle Scholar
  110. Khan I, Abdalla A, Qurashi A (2017a) Synthesis of hierarchical WO3 and Bi2O3/WO3 nanocomposite for solar-driven water splitting applications. Int J Hydrog Energy 42(5):3431–3439CrossRefGoogle Scholar
  111. Khan I, Yamani ZH, Qurashi A (2017b) Sonochemical-driven ultrafast facile synthesis of SnO2 nanoparticles: growth mechanism structural electrical and hydrogen gas sensing properties. Ultrason Sonochem 34:484–490PubMedCrossRefPubMedCentralGoogle Scholar
  112. Kim YH, Lee DK, Cha HG, Kim CW, Kang YC, Kang YS (2006) Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J Phys Chem B 110(49):24923–24928PubMedCrossRefPubMedCentralGoogle Scholar
  113. Kim S, Lee S, Lee I (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223(5):2799–2806CrossRefGoogle Scholar
  114. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84(2):151–157CrossRefGoogle Scholar
  115. Kumar R, Sharon M, Choudhary AK (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2:8392Google Scholar
  116. Kumar RR, Priyadharsani KP, Thamaraiselvi K (2012) Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii. J Nanopart Res 14(5):860CrossRefGoogle Scholar
  117. Kumar S, Bhanjana G, Sharma A, Sidhu MC, Dilbaghi N (2014) Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr Polym 101:1061–1067PubMedCrossRefGoogle Scholar
  118. Kuppusamy P, Yusoff MM, Maniam GP, Ichwan SJ, Soundharrajan I, Govindan N (2014) Nutraceuticals as potential therapeutic agents for colon cancer: a review. Acta Pharm Sin 4(3):173–181CrossRefGoogle Scholar
  119. Kuzma J, VerHage P (2006) Nanotechnology in agriculture and food production: anticipated applications. Woodrow Wilson International Center for Scholars, The Project on Emerging Nanotechnologies, Washington, D.C.. AccessedGoogle Scholar
  120. Laurent S, Forge D, Port M, Roch A, Robic C, Vander LE, Muller RN (2010) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 110:2574–2574CrossRefGoogle Scholar
  121. Lauterwasser C (2005) Small sizes that matter: opportunities and risks of nanotechnologies. Report in co-operation with the OECD International Futures Programme. Allianz Center for Technology, Munich. AccessedGoogle Scholar
  122. Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3(3):159–171CrossRefGoogle Scholar
  123. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371PubMedCrossRefPubMedCentralGoogle Scholar
  124. Li LS, Hu J, Yang W, Alivisatos AP (2001) Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett 1(7):349–351CrossRefGoogle Scholar
  125. Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9(8):852–858CrossRefGoogle Scholar
  126. Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25(4):279–283PubMedCrossRefPubMedCentralGoogle Scholar
  127. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250PubMedCrossRefPubMedCentralGoogle Scholar
  128. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake translocation and transmission of carbon nanomaterials in rice plants. Nano Micro Small 5:1128–1132Google Scholar
  129. Logeswari P, Silambarasan S, Abraham J (2012) Synthesis of silver nanoparticles using plant extracts and analysis of their antimicrobial activity. J Saudi Chem Soc 4:23–45Google Scholar
  130. Lopes CM, Fernande JR, Lopes PM (2013) Application of nanotechnology in the agro-food sector. Fac Health Sci 51(2):183–197Google Scholar
  131. Lyons K, Scrinis G (2009) Under the regulatory radar? Nanotechnologies and their impacts for rural Australia. In: Merlan F, Raftery D (eds) Tracking rural change: community, policy and technology in Australia, New Zealand and Europe. Australian National University E Press, Canberra, pp 151–171Google Scholar
  132. Manczinger L, Antal Z, Kredics L (2002) Ecophysiology and breeding of mycoparasitic Trichoderma strains. Acta Microbiol Immunol Hung 49(1):1–14PubMedCrossRefPubMedCentralGoogle Scholar
  133. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69(5):485–492PubMedCrossRefPubMedCentralGoogle Scholar
  134. Mansha M, Qurashi A, Ullah N, Bakare FO, Khan I, Yamani ZH (2016) Synthesis of In2O3/graphene heterostructure and their hydrogen gas sensing properties. Ceram Int 42(9):11490–11495CrossRefGoogle Scholar
  135. Marambio-Jones C, Hoek EM (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551CrossRefGoogle Scholar
  136. Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM (2006) Nanoemulsions: formation, structure, and physical properties. J Phys Condens Matter 18(41):635CrossRefGoogle Scholar
  137. Mazhar T, Shrivastava V, Tomar RS (2017) Green synthesis of bimetallic nanoparticles and its applications: a review. J Pharm Sci Res 9(2):102Google Scholar
  138. McClements DJ, Decker EA (2000) Lipid oxidation in oil-in-water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems. J Food Sci 65(8):1270–1282CrossRefGoogle Scholar
  139. Medici S, Massimiliano P, Valeria MN, Joanna I, Lachowicz G, Crisponi M, Antonietta Z (2015) Noble metals in medicine: latest advances. Coord Chem Rev 284:329–350CrossRefGoogle Scholar
  140. Meyer V (2008) Genetic engineering of filamentous fungi progress, obstacles and future trends. Biotechnol Adv 26(2):177–185PubMedCrossRefPubMedCentralGoogle Scholar
  141. Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25(4):376–380CrossRefGoogle Scholar
  142. Mishra S, Singh HB (2015) Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol 99(3):1097–1107PubMedCrossRefPubMedCentralGoogle Scholar
  143. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346CrossRefPubMedGoogle Scholar
  144. Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1:414–419Google Scholar
  145. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterials dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101(2):239–253PubMedCrossRefPubMedCentralGoogle Scholar
  146. Nam KT, Lee YJ, Krauland EM, Kottmann ST, Belcher AM (2008) Peptide-mediated reduction of silver ions on engineered biological scaffolds. ACS Nano 2(7):1480–1486PubMedCrossRefPubMedCentralGoogle Scholar
  147. Narayanan KB, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62(30):4588–4590CrossRefGoogle Scholar
  148. Nayak R, Pradhan N, Behera D, Pradhan K, Mishra S, Sukla L, Mishra B (2011) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanopart Res 13:3129–3137CrossRefGoogle Scholar
  149. Nel A, Xia T, Madler L, Li N (2003) Toxic potential of materials at the nano level. Science 311(5761):622–627CrossRefGoogle Scholar
  150. Nikhil ST, Bharat B (2004) Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants. Nanotechnology 15(11):1561CrossRefGoogle Scholar
  151. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839PubMedPubMedCentralCrossRefGoogle Scholar
  152. Olejnik M, Krajnik B, Kowalska D (2013) Imaging of fluorescence enhancement in photo-synthetic complexes coupled to silver nanowires. Appl Phys Lett 102:083703–083707CrossRefGoogle Scholar
  153. Oliveira MM, Ugarte D, Zanchet D, Zarbin AJ (2005) Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J Colloid Interface Sci 292(2):429–435PubMedCrossRefPubMedCentralGoogle Scholar
  154. Orts-Gil G, Natte K, Drescher D et al (2011) Characterisation of silica nanoparticles prior to in vitro studies: from primary particles to agglomerates. J Nanopart Res 13(4):1593–1604CrossRefGoogle Scholar
  155. Panácek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N (2006) J Phys Chem B 110:16248–16253. Scholar
  156. Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6(4):411–414CrossRefGoogle Scholar
  157. Parham H, Saeed S (2014) Ultrasound-assisted solid phase extraction of nitro- and chloro-(phenols) using magnetic iron oxide nanoparticles and Aliquat 336 ionic liquid. J Chromatogr A 1336:34–42. Scholar
  158. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302CrossRefGoogle Scholar
  159. Parveen S, Wani AH, Shah MA, Devi HS, Bhat MY, Koka JA (2018) Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb Pathog 115:287–292PubMedCrossRefPubMedCentralGoogle Scholar
  160. Patel N, Desai P, Patel N, Jha A, Gautam HK (2014) Agronanotechnology for plant fungal disease management: a review. Int J Curr Microbiol Appl Sci 3(10):71–84Google Scholar
  161. Patra P, Mitra S, Debnath N, Goswami A (2012) Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: an in vivo and in vitro toxicity study. Langmuir 28(49):16966–16978PubMedCrossRefPubMedCentralGoogle Scholar
  162. Peralta-Videa JR et al (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186(1):1–15PubMedCrossRefPubMedCentralGoogle Scholar
  163. Pileni MP (1997) Nanosized particles made in colloidal assemblies. Langmuir 13(13):3266–3276CrossRefGoogle Scholar
  164. Pinto RJ, Almeida A, Fernandes SC, Freire CS, Silvestre AJ, Neto CP, Trindade T (2013) Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids Surf B: Biointerfaces 103:143–148PubMedCrossRefPubMedCentralGoogle Scholar
  165. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32CrossRefGoogle Scholar
  166. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 2014:963961. Scholar
  167. Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, ChamCrossRefGoogle Scholar
  168. Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer, SingaporeCrossRefGoogle Scholar
  169. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. Scholar
  170. Prasad R, Jha A and Prasad K (2018a) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) Scholar
  171. Prasad R, Kumar V, Kumar M, Wang S (2018b) Fungal nanobionics: principles and applications. Springer, SingaporeCrossRefGoogle Scholar
  172. Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC15224. J Mater Sci Technol 24(2):192–196Google Scholar
  173. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293PubMedCrossRefPubMedCentralGoogle Scholar
  174. Rai M, Yadav A (2013) Plants as potential synthesiser of precious metal nanoparticles: progress and prospects. IET Nanobiotechnol 7(3):117–124PubMedCrossRefPubMedCentralGoogle Scholar
  175. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83PubMedCrossRefPubMedCentralGoogle Scholar
  176. Rai M, Ribeiro C, Mattoso L, Duran N (eds) (2015) Nanotechnologies in food and agriculture. Springer, ChamGoogle Scholar
  177. Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv 3(26):10471–10478CrossRefGoogle Scholar
  178. Reidy B, Andrea H, Luch A, Dawson K, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–2350PubMedPubMedCentralCrossRefGoogle Scholar
  179. Retchkiman-Schabes PS, Canizal G, Becerra-Herrera R, Zorrilla C, Liu HB, Ascencio JA (2006) Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt Mater 29:95–99CrossRefGoogle Scholar
  180. Samuel U, Guggenbichler JP (2004) Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 23:75–78CrossRefGoogle Scholar
  181. Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100(1):501–504PubMedCrossRefPubMedCentralGoogle Scholar
  182. Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62(21):4833–4838PubMedCrossRefPubMedCentralGoogle Scholar
  183. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170Google Scholar
  184. Sastry RK, Rashmi H, Rao NH, Ilyas SM (2010) Integrating nanotechnology into agri-food systems research in India: a conceptual framework. Technol Forecast Soc Chang 77(4):639–648CrossRefGoogle Scholar
  185. Satalkar P, Elger BS, Shaw DM (2016) Defining nano, nanotechnology and nanomedicine: why should it matter? Sci Eng Ethics 22(5):1255–1276PubMedCrossRefPubMedCentralGoogle Scholar
  186. Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B: Biointerfaces 73(2):332–338PubMedCrossRefPubMedCentralGoogle Scholar
  187. Schaller M, Laude J, Bodewaldt H, Hamm G, Korting HC (2004) Toxicity and antimicrobial activity of a hydrocolloid dressing containing silver particles in an ex vivo model of cutaneous infection. Skin Pharmacol Physiol 17(1):31–36PubMedCrossRefGoogle Scholar
  188. Schierholz JM, Lucast LJ, Rump A, Pulverer G (1998) Efficacy of silver coated medical devices. J Hosp Infect 40(4):257–262PubMedCrossRefPubMedCentralGoogle Scholar
  189. Scott N, Chen H (2003) Nanoscale science and engineering for agriculture and food systems. In: Proceedings of the USDA National Planning Workshop, Washington, DC, 18–19 November 2002Google Scholar
  190. Senturk A, Yalcın B, Otles S (2013) Nanotechnology as a food perspective. J Nanomater Mol Nanotechnol 2:6CrossRefGoogle Scholar
  191. Shameli K, Bin AM, Jaffar AEA, Ibrahim NA, Shabanzadeh P, Rustaiyan A, Zidan M (2012) Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules 17(7):8506–8517PubMedPubMedCentralCrossRefGoogle Scholar
  192. Sharma S, Ahmad N, Prakash A, Singh VN, Ghosh AK, Mehta BR (2010) Synthesis of crystalline Ag nanoparticles (AgNPs) from microorganisms. Mater Sci Appl 1:1–7CrossRefGoogle Scholar
  193. Sharma K, Sharma R, Shit S, Gupata S (2012) Nanotechnological application on diagnosis of a plant disease. In: Proceedings of the 2012 international conference on advances in biological and medical sciences, Singapore, 15–16 July 2012Google Scholar
  194. Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83Google Scholar
  195. Shin WK, Cho J, Kannan AG, Lee YS, Kim DW (2016) Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci Rep 6:26332PubMedPubMedCentralCrossRefGoogle Scholar
  196. Shukla DD, Lauricella R, Ward CW (1992) Serology of potyviruses: current problems and some solutions. In: Barnett OW (ed) Potyvirus taxonomy. Springer, Vienna, pp 57–69CrossRefGoogle Scholar
  197. Shyla KK, Natarajan N, Nakkeeran S (2014) Antifungal activity of zinc oxide, silver and titanium dioxide nanoparticles against Macrophomina phaseolina. J Mycol Plant Pathol 44:268–273Google Scholar
  198. Singh A, Jain D, Upadhyay MK, Khandelwal N, Verma HN (2010) Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Biostruct 5(2):483–489Google Scholar
  199. Sofi W, Gowri M, Shruthilaya M, Rayala S, Venkatraman G (2012) Silver nanoparticles as an antibacterial agent for endodontic infections. BMC Infect Dis 12(1):60CrossRefGoogle Scholar
  200. Sonawane RS, Dongare MK (2006) Sol–gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight. J Mol Catal A 243:68–76CrossRefGoogle Scholar
  201. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182PubMedCrossRefGoogle Scholar
  202. Sotthivirat S, Lubach JW, Haslam JL, Munson EJ, Stella VJ (2007) Characterization of prednisolone in controlled porosity osmotic pump pellets using solid-state NMR spectroscopy. J Pharm Sci 96(5):1008–1017PubMedCrossRefGoogle Scholar
  203. Thomas S, McCubbin P (2003) A comparison of the antimicrobial effects of four silver-containing dressings on three organisms. J Wound Care 12(3):101–107PubMedCrossRefPubMedCentralGoogle Scholar
  204. Tice CM (2001) Selecting the right compounds for screening: does Lipinski’s rule of 5 for pharmaceuticals apply to agrochemicals? Pest Manag Sci 57(1):3–16PubMedCrossRefPubMedCentralGoogle Scholar
  205. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677PubMedCrossRefPubMedCentralGoogle Scholar
  206. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57(4):724–803CrossRefGoogle Scholar
  207. Tiwari M, Narayanan K, Thakar MB, Jagani HV, Venkata Rao J (2014) Biosynthesis and wound healing activity of copper nanoparticles. IET Nanobiotechnol 8(4):230–237PubMedCrossRefGoogle Scholar
  208. Tournas VH (2005) Spoilage of vegetable crops by bacteria and fungi and related health hazards. Crit Rev Microbiol 31(1):33–44PubMedCrossRefGoogle Scholar
  209. Türk M, Bolten D (2010) Formation of submicron poorly water-soluble drugs by rapid expansion of supercritical solution (RESS): results for naproxen. J Supercrit Fluids 55(2):778–785CrossRefGoogle Scholar
  210. Ullah AR, Joyce HJ, Tan HH, Jagadish C, Micolich AP (2017) The influence of atmosphere on the performance of pure-phase WZ and ZB InAs nanowire transistors. Nanotechnology 28(45):454001PubMedCrossRefGoogle Scholar
  211. Vu HT, Keough MJ, Long SM, Pettigrove VJ (2015) Effects of the boscalid fungicide Filan® on the marine amphipod Allorchestes compressa at environmentally relevant concentrations. Environ Toxicol Chem. Scholar
  212. Wan D, Chen HL, Lin YS, Chuang SY, Shieh J, Chen SH (2009) Using spectroscopic ellipsometry to characterize and apply the optical constants of hollow gold nanoparticles. ACS Nano 3(4):960–970PubMedCrossRefGoogle Scholar
  213. Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314(1):230–235CrossRefGoogle Scholar
  214. Wang S, Lawson R, Ray PC, Yu H (2011) Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicol Ind Health 27(6):547–554PubMedPubMedCentralCrossRefGoogle Scholar
  215. Wei D, Qian W (2008) Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf B: Biointerfaces 62(1):136–142PubMedCrossRefGoogle Scholar
  216. Wei D, Sun W, Qian W, Ye Y, Ma X (2009) The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr Res 344(17):2375–2382PubMedCrossRefGoogle Scholar
  217. Woo KS, Kim KS, Lamsal K, Kim YJ, Kim SB, Mooyoung J, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19(8):760–764Google Scholar
  218. Xia T, Kovochich M, Liong M, Maadler L, Gilbert B, Shi H, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134PubMedPubMedCentralCrossRefGoogle Scholar
  219. Xu L, Liu Y, Bai R, Chen C (2010) Applications and toxicological issues surrounding nanotechnology in the food industry. Pure Appl Chem 82(2):349–372CrossRefGoogle Scholar
  220. Yan J, Huang K, Wang Y, Liu S (2005) Study on anti-pollution nano-preparation of dimethomorph and its performance. Chin Sci Bull 50(2):108–112CrossRefGoogle Scholar
  221. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132PubMedCrossRefPubMedCentralGoogle Scholar
  222. Yanping X, Yiping H, Peter LI, Tony J, Xianming S (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77:2325–2331CrossRefGoogle Scholar
  223. Zachariah MR, Aquino MI, Shull RD, Steel EB (1995) Formation of superparamagnetic nanocomposites from vapor phase condensation in a flame. Nanostruct Mater 5(4):383–392CrossRefGoogle Scholar
  224. Zaki K, Misaghi IJ, Heydari A, Shatla MN (1998) Control of cotton seedling damping-off in the field by Burkholderia (Pseudomonas) cepacia. Plant Dis 82(3):291–293PubMedCrossRefGoogle Scholar
  225. Zeng H, Li XF, Zhang GY, Dong JF (2008) Preparation and characterization of beta cypermethrin nanosuspensions by diluting O/W microemulsions. J Dispers Sci Technol 29:358–361CrossRefGoogle Scholar
  226. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10(6):713–717PubMedCrossRefPubMedCentralGoogle Scholar
  227. Zielińska-Jurek A, Reszczyńska J, Grabowska E, Zaleska A (2012) Nanoparticles preparation using microemulsion systems. InTechOpen. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Imran Ul Haq
    • 1
  • Siddra Ijaz
    • 2
  1. 1.Department of Plant Pathology, Faculty of AgricultureUniversity of AgricultureFaisalabadPakistan
  2. 2.Centre of Agricultural Biochemistry and Biotechnology (CABB), Faculty of AgricultureUniversity of AgricultureFaisalabadPakistan

Personalised recommendations