Hand Function pp 125-135 | Cite as

Hand Function in Stroke

  • Osman Hakan Gündüz
  • Canan Şanal Toprak


Upper extremity function is one of the most frequently impaired domains of stroke, and deficits are especially prevalent in the hand. Approximately half of stroke patients have incomplete motor recovery of the upper extremity despite participating in a rehabilitation program. The primary impairments seen in the hemiparetic upper extremity are muscle weakness, spasticity, contractures, and reduced capacity to control the joints independently. These impairments cause difficulties to perform activities of daily living (ADL). The evaluation of early predictors for dexterity of the hand is essential in order to make decisions regarding the type, duration, and goals of effective rehabilitation. Early individualized rehabilitation therapies are the principal interventions for regaining the best hand function in stroke patients.


Stroke Hand function Assessment Rehabilitation Upper extremity 


  1. 1.
    Warlow C, Van Gijn J, Dennis MS, Wardlaw JM, Sandercock PA, Rinkel G, et al. Stroke: practical management. 3rd ed. Oxford: Blackwell Publishing; 2008. p. 1–5.Google Scholar
  2. 2.
    Gobbo M, Gaffurini P, Vacchi L, Lazzarini S, Villafane J, Orizio C, et al. Hand passive mobilization performed with robotic assistance: acute effects on upper limb perfusion and spasticity in stroke survivors. Biomed Res Int. 2017;2017:1.CrossRefGoogle Scholar
  3. 3.
    Arwert H, Schut S, Boiten J, Vliet Vlieland T, Meesters J. Patient reported outcomes of hand function three years after stroke. Top Stroke Rehabil. 2017;25:1–7.CrossRefGoogle Scholar
  4. 4.
    Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34:2181–6.CrossRefGoogle Scholar
  5. 5.
    Dijkerman HC, Wood VA, Hewer RL. Long-term outcome after discharge from a stroke rehabilitation unit. J R Coll Physicians Lond. 1996;30:538–46.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ytterberg C, Dybäck M, Bergström A, Guidetti S, Eriksson G. Perceived impact of stroke six years after onset, and changes in impact between one and six years. J Rehabil Med. 2017;49:637.CrossRefGoogle Scholar
  7. 7.
    Pandyan A, Cameron M, Powell J, Stott D, Granat M. Contractures in the post-stroke wrist: a pilot study of its time course of development and its association with upper limb recovery. Clin Rehabil. 2003;17:88–95.CrossRefGoogle Scholar
  8. 8.
    Higgins J, Mayo NE, Desrosiers J, Salbach NM, Ahmed S. Upper-limb function and recovery in the acute phase poststroke. J Rehabil Res Dev. 2005;42:65.CrossRefGoogle Scholar
  9. 9.
    Owen M, Ingo C, Dewald J. Upper extremity motor impairments and microstructural changes in Bulbospinal pathways in chronic hemiparetic stroke. Front Neurol. 2017;8:257.CrossRefGoogle Scholar
  10. 10.
    Miller LC, Dewald JP. Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke. Clin Neurophysiol. 2012;123:1216–25.CrossRefGoogle Scholar
  11. 11.
    Lan Y, Yao J, Dewald J. Reducing the impact of shoulder abduction loading on the classification of hand opening and grasping in individuals with Poststroke flexion synergy. Front Bioeng Biotechnol. 2017;5:39.CrossRefGoogle Scholar
  12. 12.
    Lan Y, Yao J, Dewald J. Increased shoulder abduction loads decreases volitional finger extension in individuals with chronic stroke: preliminary findings. In: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE. 2014; IEEE; p. 5808–11.Google Scholar
  13. 13.
    Raghavan P. The nature of hand motor impairment after stroke and its treatment. Curr Treat Options Cardiovasc Med. 2007;9:221–8.CrossRefGoogle Scholar
  14. 14.
    Stinear CM, Byblow WD, Ackerley SJ, Barber PA, Smith M-C. Predicting recovery potential for individual stroke patients increases rehabilitation efficiency. Stroke. 2017; Scholar
  15. 15.
    Stinear C. Prediction of recovery of motor function after stroke. Lancet Neurol. 2010;9:1228–32.CrossRefGoogle Scholar
  16. 16.
    Beebe JA, Lang CE. Active range of motion predicts upper extremity function 3 months after stroke. Stroke. 2009;40:1772–9.CrossRefGoogle Scholar
  17. 17.
    Pizzi A, Carrai R, Falsini C, Martini M, Verdesca S, Grippo A. Prognostic value of motor evoked potentials in motor function recovery of upper limb after stroke. J Rehabil Med. 2009;41:654–60.CrossRefGoogle Scholar
  18. 18.
    Olsson OA, Persson HC, Murphy MA, Sunnerhagen KS. Early prediction of physical activity level 1 year after stroke: a longitudinal cohort study. BMJ Open. 2017;7:e016369.CrossRefGoogle Scholar
  19. 19.
    Han KY, Kim HJ, Bang HJ. Feasibility of applying the extended ICF core set for stroke to clinical settings in rehabilitation: a preliminary study. Ann Rehabil Med. 2015;39:56–65.CrossRefGoogle Scholar
  20. 20.
    Haugh AB, Pandyan AD, Johnson GR. A systematic review of the Tardieu Scale for the measurement of spasticity. Disabil Rehabil. 2006;28:899–907.CrossRefGoogle Scholar
  21. 21.
    Patrick E, Ada L. The Tardieu Scale differentiates contracture from spasticity whereas the Ashworth Scale is confounded by it. Clin Rehabil. 2006;20:173–82.CrossRefGoogle Scholar
  22. 22.
    Paulis WD, Horemans HL, Brouwer BS, Stam HJ. Excellent test–retest and inter-rater reliability for Tardieu Scale measurements with inertial sensors in elbow flexors of stroke patients. Gait Posture. 2011;33:185–9.CrossRefGoogle Scholar
  23. 23.
    Bushnell C, Bettger JP, Cockroft KM, Cramer SC, Edelen MO, Hanley D, et al. Chronic stroke outcome measures for motor function intervention trials: expert panel recommendations. Circ Cardiovasc Qual Outcomes. 2015;8:S163–9.CrossRefGoogle Scholar
  24. 24.
    Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16:232–40.CrossRefGoogle Scholar
  25. 25.
    Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the box and block test of manual dexterity. Am J Occup Ther. 1985;39:386–91.CrossRefGoogle Scholar
  26. 26.
    Chen HM, Chen CC, Hsueh IP, Huang SL, Hsieh CL. Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke. Neurorehabil Neural Repair. 2009;23:435–40.CrossRefGoogle Scholar
  27. 27.
    Lin KC, Chuang LL, Wu CY, Hsieh YW, Chang WY. Responsiveness and validity of three dexterous function measures in stroke rehabilitation. J Rehabil Res Dev. 2010;47:563–71.CrossRefGoogle Scholar
  28. 28.
    Mathiowetz V, Weber K, Kashman N, Volland G. Adult norms for the nine hole peg test of finger dexterity. Occup Ther J Res. 1985;5:24–38.CrossRefGoogle Scholar
  29. 29.
    Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA. An objective and standardized test of hand function. Arch Phys Med Rehabil. 1969;50:311–9.Google Scholar
  30. 30.
    Beebe JA, Lang CE. Relationships and responsiveness of six upper extremity function tests during the first six months of recovery after stroke. J Neurol Phys Ther. 2009;33:96–103.CrossRefGoogle Scholar
  31. 31.
    Nijland R, van Wegen E, Verbunt J, van Wijk R, van Kordelaar J, Kwakkel G. A comparison of two validated tests for upper limb function after stroke: the Wolf Motor function test and the action research arm test. J Rehabil Med. 2010;42:694–6.CrossRefGoogle Scholar
  32. 32.
    Van der Lee JH, De Groot V, Beckerman H, Wagenaar RC, Lankhorst GJ, Bouter LM. The intra- and interrater reliability of the action research arm test: a practical test of upper extremity function in patients with stroke. Arch Phys Med Rehabil. 2001;82:14–9.CrossRefGoogle Scholar
  33. 33.
    Kunkel A, Kopp B, Muller G, Villringer K, Villringer A, Taub E, et al. Constraint-induced movement therapy for motor recovery in chronic stroke patients. Arch Phys Med Rehabil. 1999;80:624–8.CrossRefGoogle Scholar
  34. 34.
    Wolf SL, Lecraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol. 1989;104:125–32.CrossRefGoogle Scholar
  35. 35.
    Sezer N, Yavuzer G, Sivrioglu K, Basaran P, Koseoglu BF. Clinimetric properties of the Duruoz hand index in patients with stroke. Arch Phys Med Rehabil. 2007;88:309–14.CrossRefGoogle Scholar
  36. 36.
    Arwert HJ, Keizer S, Kromme CH, Vliet Vlieland TP, Meesters JJ. Validity of the Michigan hand outcomes questionnaire in patients with stroke. Arch Phys Med Rehabil. 2016;97:238–44.CrossRefGoogle Scholar
  37. 37.
    Krumlinde-Sundholm L, Lindkvist B, Plantin J, Hoare B. Development of the assisting hand assessment for adults following stroke: a Rasch-built bimanual performance measure. Disabil Rehabil. 2019;41:472–80.CrossRefGoogle Scholar
  38. 38.
    Wattchow KA, McDonnell MN, Hillier SL. Rehabilitation interventions for upper limb function in the first four weeks following stroke: a systematic review and meta-analysis of the evidence. Arch Phys Med Rehabil. 2018;99:367–82.CrossRefGoogle Scholar
  39. 39.
    Hatem SM, Saussez G, Della Faille M, Prist V, Zhang X, Dispa D, et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci. 2016;10:442.CrossRefGoogle Scholar
  40. 40.
    Graham JV, Eustace C, Brock K, Swain E, Irwin-Carruthers S. The Bobath concept in contemporary clinical practice. Top Stroke Rehabil. 2009;16:57–68.CrossRefGoogle Scholar
  41. 41.
    Bayona NA, Bitensky J, Salter K, Teasell R. The role of task-specific training in rehabilitation therapies. Top Stroke Rehabil. 2005;12:58–65.CrossRefGoogle Scholar
  42. 42.
    Hubbard IJ, Parsons MW, Neilson C, Carey LM. Task-specific training: evidence for and translation to clinical practice. Occup Ther Int. 2009;16:175–89.CrossRefGoogle Scholar
  43. 43.
    Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016;47:e98–e169.CrossRefGoogle Scholar
  44. 44.
    Taub E, Uswatte G, Pidikiti R. Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation—a clinical review. J Rehabil Res Dev. 1999;36:237–51.PubMedGoogle Scholar
  45. 45.
    Liu X-H, Huai J, Gao J, Zhang Y, Yue S-W. Constraint-induced movement therapy in treatment of acute and sub-acute stroke: a meta-analysis of 16 randomized controlled trials. Neural Regen Res. 2017;12:1443.CrossRefGoogle Scholar
  46. 46.
    Siebers A, Oberg U, Skargren E. The effect of modified constraint-induced movement therapy on spasticity and motor function of the affected arm in patients with chronic stroke. Physiother Can. 2010;62:388–96.CrossRefGoogle Scholar
  47. 47.
    Wolf SL, Thompson PA, Winstein CJ, Miller JP, Blanton SR, Nichols-Larsen DS, et al. The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy. Stroke. 2010;41:2309–15.CrossRefGoogle Scholar
  48. 48.
    McCombe Waller S, Whitall J. Bilateral arm training: why and who benefits? NeuroRehabilitation. 2008;23:29–41.PubMedGoogle Scholar
  49. 49.
    Stewart KC, Cauraugh JH, Summers JJ. Bilateral movement training and stroke rehabilitation: a systematic review and meta-analysis. J Neurol Sci. 2006;244:89–95.CrossRefGoogle Scholar
  50. 50.
    Stoykov ME, Lewis GN, Corcos DM. Comparison of bilateral and unilateral training for upper extremity hemiparesis in stroke. Neurorehabil Neural Repair. 2009;23:945–53.CrossRefGoogle Scholar
  51. 51.
    Morris JH, van Wijck F, Joice S, Ogston SA, Cole I, MacWalter RS. A comparison of bilateral and unilateral upper-limb task training in early poststroke rehabilitation: a randomized controlled trial. Arch Phys Med Rehabil. 2008;89:1237–45.CrossRefGoogle Scholar
  52. 52.
    Jackson PL, Lafleur MF, Malouin F, Richards C, Doyon J. Potential role of mental practice using motor imagery in neurologic rehabilitation. Arch Phys Med Rehabil. 2001;82:1133–41.CrossRefGoogle Scholar
  53. 53.
    Munzert J, Lorey B, Zentgraf K. Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev. 2009;60:306–26.CrossRefGoogle Scholar
  54. 54.
    Guerra ZF, Lucchetti ALG, Lucchetti G. Motor imagery training after stroke: a systematic review and meta-analysis of randomized controlled trials. J Neurol Phys Ther. 2017;41:205–14.CrossRefGoogle Scholar
  55. 55.
    Michielsen ME, Selles RW, van der Geest JN, Eckhardt M, Yavuzer G, Stam HJ, et al. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: a phase II randomized controlled trial. Neurorehabil Neural Repair. 2011;25:223–33.CrossRefGoogle Scholar
  56. 56.
    Thieme H, Mehrholz J, Pohl M, Behrens J, Dohle C. Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev. 2012;
  57. 57.
    Zeng W, Guo Y, Wu G, Liu X, Fang Q. Mirror therapy for motor function of the upper extremity in patients with stroke: a meta-analysis. J Rehabil Med. 2018;50:8–15.CrossRefGoogle Scholar
  58. 58.
    Oujamaa L, Relave I, Froger J, Mottet D, Pelissier JY. Rehabilitation of arm function after stroke. Literature review. Ann Phys Rehabil Med. 2009;52:269–93.CrossRefGoogle Scholar
  59. 59.
    Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22:111–21.CrossRefGoogle Scholar
  60. 60.
    Sivan M, O’Connor RJ, Makower S, Levesley M, Bhakta B. Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. J Rehabil Med. 2011;43:181–9.CrossRefGoogle Scholar
  61. 61.
    Zollo L, Gallotta E, Guglielmelli E, Sterzi S. Robotic technologies and rehabilitation: new tools for upper-limb therapy and assessment in chronic stroke. Eur J Phys Rehabil Med. 2011;47:223–36.PubMedGoogle Scholar
  62. 62.
    Gobbo M, Gaffurini P, Vacchi L, Lazzarini S, Villafane J, Orizio C, et al. Hand passive mobilization performed with robotic assistance: acute effects on upper limb perfusion and spasticity in stroke survivors. Biomed Res Int. 2017;2017:2796815.CrossRefGoogle Scholar
  63. 63.
    Mehrholz J, Pohl M. Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoskeleton devices. J Rehabil Med. 2012;44:193–9.CrossRefGoogle Scholar
  64. 64.
    Masiero S, Armani M, Rosati G. Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial. J Rehabil Res Dev. 2011;48:355–66.CrossRefGoogle Scholar
  65. 65.
    Schuhfried O, Crevenna R, Fialka-Moser V, Paternostro-Sluga T. Non-invasive neuromuscular electrical stimulation in patients with central nervous system lesions: an educational review. J Rehabil Med. 2012;44:99–105.CrossRefGoogle Scholar
  66. 66.
    Wilson RD, Page SJ, Delahanty M, Knutson JS, Gunzler DD, Sheffler LR, et al. Upper-limb recovery after stroke: a randomized controlled trial comparing EMG-triggered, cyclic, and sensory electrical stimulation. Neurorehabil Neural Repair. 2016;30:978–87.CrossRefGoogle Scholar
  67. 67.
    Lannin NA, Herbert RD. Is hand splinting effective for adults following stroke? A systematic review and methodologic critique of published research. Clin Rehabil. 2003;17:807–16.CrossRefGoogle Scholar
  68. 68.
    Pizzi A, Carlucci G, Falsini C, Verdesca S, Grippo A. Application of a volar static splint in poststroke spasticity of the upper limb. Arch Phys Med Rehabil. 2005;86:1855–9.CrossRefGoogle Scholar
  69. 69.
    Pitts DG, O’Brien SP. Splinting the hand to enhance motor control and brain plasticity. Top Stroke Rehabil. 2008;15:456–67.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Osman Hakan Gündüz
    • 1
  • Canan Şanal Toprak
    • 1
  1. 1.Department of Physical Medicine and RehabilitationMarmara University Medical SchoolIstanbulTurkey

Personalised recommendations