Hand Function pp 163-179 | Cite as

Hand Function in Parkinson’s Disease

  • Jamie R. Lukos
  • Howard PoiznerEmail author
  • Jacob Sage


Parkinson’s disease (PD) patients have a number of functional hand impairments. The latency and rate of isometric force generation is impaired in PD. Motor dysfunction is also related to impaired integration of sensory feedback and motor output. Moreover, PD patients exhibit sensory deficits such as decreased spatial and temporal tactile discrimination thresholds of the fingertips. Impairments of reaching and grasping are seen as patients tend to exhibit difficulty in movement initiation to a target. There are deficits in hand preshaping to object geometry. There is a lack of coordination between the timing of the reach and grasp components. Patients have an overall dependence on visual cues to control movement. They exhibit impairments in the planning of where to place their digits, resulting in suboptimal performance of object manipulation. It is hypothesized that predictive force control deficits are a result of central impairments associated with the generation and/or retrieval of sensorimotor memories for movement planning.

Clinical aspects of hand function include resting, postural or internal tremor, bradykinesia, and rigidity. Elements of the unified Parkinson’s disease rating scale (UPDRS) are the best way to measure deficits in hand function. Choreiform dyskinesias and dystonia may interfere with hand function.


Basal ganglion Deep brain stimulation Visual feedback Grip force Hand function 



Supported in part by NIH grant #2 R01 NS036449 (HP)


  1. 1.
    Rodriguez-Oroz MC, Lage PM, Sanchez-Mut J, Lamet I, Pagonabarraga J, Toledo JB, Garcia-Garcia D, Clavero P, Samaranch L, Irurzun C, Matsubara JM, Irigoien J, Bescos E, Kulisevsky J, Perez-Tur J, Obeso JA. Homocysteine and cognitive impairment in Parkinson’s disease: a biochemical, neuroimaging, and genetic study. Mov Disord. 2009;24:1437–44.PubMedCrossRefGoogle Scholar
  2. 2.
    Rivlin-Etzion M, Marmor O, Heimer G, Raz A, Nini A, Bergman H. Basal ganglia oscillations and pathophysiology of movement disorders. Curr Opin Neurobiol. 2006;16:629–37.PubMedCrossRefGoogle Scholar
  3. 3.
    Brown P, Marsden CD. Bradykinesia and impairment of EEG desynchronization in Parkinson’s disease. Mov Disord. 1999;14:423–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Benecke R, Rothwell JC, Dick JP, Day BL, Marsden CD. Disturbance of sequential movements in patients with Parkinson’s disease. Brain. 1987;110(Pt 2):361–79.PubMedCrossRefGoogle Scholar
  5. 5.
    Adamovich SV, Berkinblit MB, Hening W, Sage J, Poizner H. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson’s disease. Neuroscience. 2001;104:1027–41.PubMedCrossRefGoogle Scholar
  6. 6.
    Flowers KA. Visual “closed-loop” and “open-loop” characteristics of voluntary movement in patients with Parkinsonism and intention tremor. Brain. 1976;99:269–310.PubMedCrossRefGoogle Scholar
  7. 7.
    Poizner H, Feldman AG, Levin MF, Berkinblit MB, Hening WA, Patel A, Adamovich SV. The timing of arm-trunk coordination is deficient and vision-dependent in Parkinson’s patients during reaching movements. Exp Brain Res. 2000;133:279–92.PubMedCrossRefGoogle Scholar
  8. 8.
    Schettino LF, Adamovich SV, Hening W, Tunik E, Sage J, Poizner H. Hand preshaping in Parkinson’s disease: effects of visual feedback and medication state. Exp Brain Res. 2006;168:186–202.PubMedCrossRefGoogle Scholar
  9. 9.
    Tunik E, Feldman AG, Poizner H. Dopamine replacement therapy does not restore the ability of Parkinsonian patients to make rapid adjustments in motor strategies according to changing sensorimotor contexts. Parkinsonism Relat Disord. 2007;13:425–33.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Castiello U. The neuroscience of grasping. Nat Rev Neurosci. 2005;6:726–36.PubMedCrossRefGoogle Scholar
  11. 11.
    Prodoehl J, Corcos DM, Vaillancourt DE. Basal ganglia mechanisms underlying precision grip force control. Neurosci Biobehav Rev. 2009;33:900–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Clower DM, Dum RP, Strick PL. Basal ganglia and cerebellar inputs to ‘AIP’. Cereb Cortex. 2005;15:913–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Hoover JE, Strick PL. Multiple output channels in the basal ganglia. Science. 1993;259:819–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31:236–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Holsapple JW, Preston JB, Strick PL. The origin of thalamic inputs to the “hand” representation in the primary motor cortex. J Neurosci. 1991;11:2644–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Nambu A, Yoshida S, Jinnai K. Projection on the motor cortex of thalamic neurons with pallidal input in the monkey. Exp Brain Res. 1988;71:658–62.PubMedCrossRefGoogle Scholar
  17. 17.
    DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol. 2007;64:20–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Spraker MB, Yu H, Corcos DM, Vaillancourt DE. Role of individual basal ganglia nuclei in force amplitude generation. J Neurophysiol. 2007;98:821–34.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Vaillancourt DE, Yu H, Mayka MA, Corcos DM. Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses. NeuroImage. 2007;36:793–803.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Jordan N, Sagar HJ, Cooper JA. A component analysis of the generation and release of isometric force in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1992;55:572–6.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Stelmach GE, Worringham CJ. The preparation and production of isometric force in Parkinson’s disease. Neuropsychologia. 1988;26:93–103.PubMedCrossRefGoogle Scholar
  22. 22.
    Vaillancourt DE, Slifkin AB, Newell KM. Intermittency in the visual control of force in Parkinson’s disease. Exp Brain Res. 2001;138:118–27.PubMedCrossRefGoogle Scholar
  23. 23.
    Mortimer JA, Webster DD. Evidence for a quantitative association between EMG stretch responses and Parkinsonian rigidity. Brain Res. 1979;162:169–73.PubMedCrossRefGoogle Scholar
  24. 24.
    Rothwell JC, Obeso JA, Traub MM, Marsden CD. The behaviour of the long-latency stretch reflex in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1983;46:35–44.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Cantello R, Tarletti R, Varrasi C, Cecchin M, Monaco F. Cortical inhibition in Parkinson’s disease: new insights from early, untreated patients. Neuroscience. 2007;150:64–71.PubMedCrossRefGoogle Scholar
  26. 26.
    Dietz V, Hillesheimer W, Freund HJ. Correlation between tremor, voluntary contraction, and firing pattern of motor units in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1974;37:927–37.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Milner-Brown HS, Fisher MA, Weiner WJ. Electrical properties of motor units in Parkinsonism and a possible relationship with bradykinesia. J Neurol Neurosurg Psychiatry. 1979;42:35–41.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Berardelli A, Rothwell JC, Thompson PD, Hallett M. Pathophysiology of bradykinesia in Parkinson’s disease. Brain J Neurol. 2001;124:2131–46.CrossRefGoogle Scholar
  29. 29.
    Sainburg RL, Ghilardi MF, Poizner H, Ghez C. Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol. 1995;73:820–35.PubMedCrossRefGoogle Scholar
  30. 30.
    Sathian K, Zangaladze A, Green J, Vitek JL, DeLong MR. Tactile spatial acuity and roughness discrimination: impairments due to aging and Parkinson’s disease. Neurology. 1997;49:168–77.PubMedCrossRefGoogle Scholar
  31. 31.
    Artieda J, Pastor MA, Lacruz F, Obeso JA. Temporal discrimination is abnormal in Parkinson’s disease. Brain. 1992;115(Pt 1):199–210.PubMedCrossRefGoogle Scholar
  32. 32.
    Konczak J, Li KY, Tuite PJ, Poizner H. Haptic perception of object curvature in Parkinson’s disease. PLoS One. 2008;3:e2625.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Konczak J, Corcos DM, Horak F, Poizner H, Shapiro M, Tuite P, Volkmann J, Maschke M. Proprioception and motor control in Parkinson’s disease. J Mot Behav. 2009;41:543–52.PubMedCrossRefGoogle Scholar
  34. 34.
    Maschke M, Gomez CM, Tuite PJ, Konczak J. Dysfunction of the basal ganglia, but not the cerebellum, impairs kinaesthesia. Brain. 2003;126:2312–22.PubMedCrossRefGoogle Scholar
  35. 35.
    Abbruzzese G, Berardelli A. Sensorimotor integration in movement disorders. Mov Disord. 2003;18:231–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Seiss E, Praamstra P, Hesse CW, Rickards H. Proprioceptive sensory function in Parkinson’s disease and Huntington’s disease: evidence from proprioception-related EEG potentials. Exp Brain Res. 2003;148:308–19.PubMedCrossRefGoogle Scholar
  37. 37.
    Lee MS, Lyoo CH, Lee MJ, Sim J, Cho H, Choi YH. Impaired finger dexterity in patients with Parkinson’s disease correlates with discriminative cutaneous sensory dysfunction. Mov Disord. 2010;25:2531–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Nakamura R, Nagasaki H, Narabayashi H. Disturbances of rhythm formation in patients with Parkinson’s disease: part I. Characteristics of tapping response to the periodic signals. Percept Mot Skills. 1978;46:63–75.PubMedCrossRefGoogle Scholar
  39. 39.
    Stegemoller EL, Simuni T, MacKinnon C. Effect of movement frequency on repetitive finger movements in patients with Parkinson’s disease. Mov Disord. 2009;24:1162–9.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Stelmach GE, Garcia-Colera A, Martin ZE. Force transition control within a movement sequence in Parkinson’s disease. J Neurol. 1989;236:406–10.PubMedCrossRefGoogle Scholar
  41. 41.
    Frischer M. Voluntary vs autonomous control of repetitive finger tapping in a patient with Parkinson’s disease. Neuropsychologia. 1989;27:1261–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Gebhardt A, Vanbellingen T, Baronti F, Kersten B, Bohlhalter S. Poor dopaminergic response of impaired dexterity in Parkinson’s disease: bradykinesia or limb kinetic apraxia? Mov Disord. 2008;23:1701–6.PubMedCrossRefGoogle Scholar
  43. 43.
    O’Boyle DJ, Freeman JS, Cody FW. The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson’s disease. Brain. 1996;119(Pt 1):51–70.PubMedCrossRefGoogle Scholar
  44. 44.
    Quencer K, Okun MS, Crucian G, Fernandez HH, Skidmore F, Heilman KM. Limb-kinetic apraxia in Parkinson disease. Neurology. 2007;68:150–1.PubMedCrossRefGoogle Scholar
  45. 45.
    Stewart KC, Fernandez HH, Okun MS, Alberts JL, Malaty IA, Rodriguez RL, Hass CJ. Effects of dopaminergic medication on objective tasks of deftness, bradykinesia and force control. J Neurol. 2009;256:2030.PubMedCrossRefGoogle Scholar
  46. 46.
    Stegemoller EL, Allen DP, Simuni T, MacKinnon CD. Rate-dependent impairments in repetitive finger movements in patients with Parkinson’s disease are not due to peripheral fatigue. Neurosci Lett. 2010;482:1–6.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Desmurget M, Grafton ST, Vindras P, Grea H, Turner RS. Basal ganglia network mediates the control of movement amplitude. Exp Brain Res Exp Hirnforsch Exp Cereb. 2003;153:197–209.CrossRefGoogle Scholar
  48. 48.
    Jahanshahi M, Brown RG, Marsden CD. Simple and choice reaction time and the use of advance information for motor preparation in Parkinson’s disease. Brain J Neurol. 1992;115(Pt 2):539–64.CrossRefGoogle Scholar
  49. 49.
    Stelmach GE, Worringham CJ, Strand EA. Movement preparation in Parkinson’s disease. The use of advance information. Brain J Neurol. 1986;109(Pt 6):1179–94.CrossRefGoogle Scholar
  50. 50.
    Santello M, Soechting JF. Gradual molding of the hand to object contours. J Neurophysiol. 1998;79:1307–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Winges SA, Weber DJ, Santello M. The role of vision on hand preshaping during reach to grasp. Exp Brain Res. 2003;152:489–98.PubMedCrossRefGoogle Scholar
  52. 52.
    Ansuini C, Begliomini C, Ferrari T, Castiello U. Testing the effects of end-goal during reach-to-grasp movements in Parkinson’s disease. Brain Cogn. 2010;74:169–77.PubMedCrossRefGoogle Scholar
  53. 53.
    Schettino LF, Rajaraman V, Jack D, Adamovich SV, Sage J, Poizner H. Deficits in the evolution of hand preshaping in Parkinson’s disease. Neuropsychologia. 2004;42:82–94.PubMedCrossRefGoogle Scholar
  54. 54.
    Alberts JL, Tresilian JR, Stelmach GE. The co-ordination and phasing of a bilateral prehension task. The influence of Parkinson’s disease. Brain. 1998;121(Pt 4):725–42.PubMedCrossRefGoogle Scholar
  55. 55.
    Jackson SR, Jackson GM, Harrison J, Henderson L, Kennard C. The internal control of action and Parkinson’s disease: a kinematic analysis of visually-guided and memory-guided prehension movements. Exp Brain Res. 1995;105:147–62.PubMedCrossRefGoogle Scholar
  56. 56.
    Rand MK, Smiley-Oyen AL, Shimansky YP, Bloedel JR, Stelmach GE. Control of aperture closure during reach-to-grasp movements in Parkinson’s disease. Exp Brain Res. 2006;168:131–42.PubMedCrossRefGoogle Scholar
  57. 57.
    Jackson GM, Jackson SR, Hindle JV. The control of bimanual reach-to-grasp movements in hemiparkinsonian patients. Exp Brain Res Exp Hirnforsch Exp Cereb. 2000;132:390–8.CrossRefGoogle Scholar
  58. 58.
    Negrotti A, Secchi C, Gentilucci M. Effects of disease progression and L-dopa therapy on the control of reaching-grasping in Parkinson’s disease. Neuropsychologia. 2005;43:450–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Castiello U, Bennett KM, Scarpa M. The reach to grasp movement of Parkinson’s disease subjects. In: Bennett KM, Castiello U, editors. Insights into the reach to grasp movement. Amsterdam: Elsevier; 1994. p. 215–37.Google Scholar
  60. 60.
    Flowers K. Lack of prediction in the motor behaviour of Parkinsonism. Brain. 1978;101:35–52.PubMedCrossRefGoogle Scholar
  61. 61.
    Stern Y, Mayeux R, Rosen J, Ilson J. Perceptual motor dysfunction in Parkinson’s disease: a deficit in sequential and predictive voluntary movement. J Neurol Neurosurg Psychiatry. 1983;46:145–51.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Ansuini C, Giosa L, Turella L, Altoe G, Castiello U. An object for an action, the same object for other actions: effects on hand shaping. Exp Brain Res Exp Hirnforsch Exp Cereb. 2008;185:111–9.CrossRefGoogle Scholar
  63. 63.
    Castiello U, Bennett K, Bonfiglioli C, Lim S, Peppard RF. The reach-to-grasp movement in Parkinson’s disease: response to a simultaneous perturbation of object position and object size. Exp Brain Res Exp Hirnforsch Exp Cereb. 1999;125:453–62.CrossRefGoogle Scholar
  64. 64.
    Rand MK, Lemay M, Squire LM, Shimansky YP, Stelmach GE. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson’s disease. Exp Brain Res. 2010;201:509–25.PubMedCrossRefGoogle Scholar
  65. 65.
    Lukos J, Ansuini C, Santello M. Choice of contact points during multidigit grasping: effect of predictability of object center of mass location. J Neurosci. 2007;27:3894–903.PubMedCrossRefGoogle Scholar
  66. 66.
    Lukos JR, Ansuini C, Santello M. Anticipatory control of grasping: independence of sensorimotor memories for kinematics and kinetics. J Neurosci. 2008;28:12765–74.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lukos JR, Lee D, Poizner H, Santello M. Anticipatory modulation of digit placement for grasp control is affected by Parkinson’s disease. PLoS One. 2010;5:e9184.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Fellows SJ, Noth J, Schwarz M. Precision grip and Parkinson’s disease. Brain. 1998;121(Pt 9):1771–84.PubMedCrossRefGoogle Scholar
  69. 69.
    Ingvarsson PE, Gordon AM, Forssberg H. Coordination of manipulative forces in Parkinson’s disease. Exp Neurol. 1997;145:489–501.PubMedCrossRefGoogle Scholar
  70. 70.
    Nowak DA, Hermsdorfer J. Coordination of grip and load forces during vertical point-to-point movements with a grasped object in Parkinson’s disease. Behav Neurosci. 2002;116:837–50.PubMedCrossRefGoogle Scholar
  71. 71.
    Muratori LM, McIsaac TL, Gordon AM, Santello M. Impaired anticipatory control of force sharing patterns during whole-hand grasping in Parkinson’s disease. Exp Brain Res. 2008;185:41–52.PubMedCrossRefGoogle Scholar
  72. 72.
    Santello M, Muratori L, Gordon AM. Control of multidigit grasping in Parkinson’s disease: effect of object property predictability. Exp Neurol. 2004;187:517–28.PubMedCrossRefGoogle Scholar
  73. 73.
    Gordon AM, Ingvarsson PE, Forssberg H. Anticipatory control of manipulative forces in Parkinson’s disease. Exp Neurol. 1997;145:477–88.PubMedCrossRefGoogle Scholar
  74. 74.
    Nowak DA, Hermsdorfer J. Predictive and reactive control of grasping forces: on the role of the basal ganglia and sensory feedback. Exp Brain Res. 2006;173:650–60.PubMedCrossRefGoogle Scholar
  75. 75.
    Wenzelburger R, Zhang BR, Pohle S, Klebe S, Lorenz D, Herzog J, Wilms H, Deuschl G, Krack P. Force overflow and levodopa-induced dyskinesias in Parkinson’s disease. Brain. 2002b;125:871–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Johansson RS. Somatosensory signals and sensorimotor transformations in reactive control. In: Franzen O, et al., editors. Somesthesis and the neurobiology of the somatosensory cortex. Basel: Bi rkhäus e r Verlag Basel; 1996. p. 271–82.CrossRefGoogle Scholar
  77. 77.
    Westling G, Johansson RS. Factors influencing the force control during precision grip. Exp Brain Res. 1984;53:277–84.PubMedCrossRefGoogle Scholar
  78. 78.
    Rearick MP, Stelmach GE, Leis B, Santello M. Coordination and control of forces during multifingered grasping in Parkinson’s disease. Exp Neurol. 2002;177:428–42.PubMedCrossRefGoogle Scholar
  79. 79.
    Boecker H, Lee A, Muhlau M, Ceballos-Baumann A, Ritzl A, Spilker ME, Marquart C, Hermsdorfer J. Force level independent representations of predictive grip force-load force coupling: a PET activation study. NeuroImage. 2005;25:243–52.PubMedCrossRefGoogle Scholar
  80. 80.
    Pope P, Wing AM, Praamstra P, Miall RC. Force related activations in rhythmic sequence production. NeuroImage. 2005;27:909–18.PubMedCrossRefGoogle Scholar
  81. 81.
    Prodoehl J, Yu H, Wasson P, Corcos DM, Vaillancourt DE. Effects of visual and auditory feedback on sensorimotor circuits in the basal ganglia. J Neurophysiol. 2008;99:3042–51.PubMedCrossRefGoogle Scholar
  82. 82.
    Vaillancourt DE, Mayka MA, Thulborn KR, Corcos DM. Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans. NeuroImage. 2004;23:175–86.PubMedCrossRefGoogle Scholar
  83. 83.
    Ehrsson HH, Fagergren A, Johansson RS, Forssberg H. Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. J Neurophysiol. 2003;90:2978–86.PubMedCrossRefGoogle Scholar
  84. 84.
    Escola L, Michelet T, Douillard G, Guehl D, Bioulac B, Burbaud P. Disruption of the proprioceptive mapping in the medial wall of parkinsonian monkeys. Ann Neurol. 2002;52:581–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Haslinger B, Erhard P, Kampfe N, Boecker H, Rummeny E, Schwaiger M, Conrad B, Ceballos-Baumann AO. Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain. 2001;124:558–70.PubMedCrossRefGoogle Scholar
  86. 86.
    Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, Bozzao L, Berry I, Montastruc JL, Chollet F, Rascol O. Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain J Neurol. 2000;123(Pt 2):394–403.CrossRefGoogle Scholar
  87. 87.
    Samuel M, Ceballos-Baumann AO, Blin J, Uema T, Boecker H, Passingham RE, Brooks DJ. Evidence for lateral premotor and parietal overactivity in Parkinson’s disease during sequential and bimanual movements. A PET study. Brain J Neurol. 1997;120(Pt 6):963–76.CrossRefGoogle Scholar
  88. 88.
    Rowe J, Stephan KE, Friston K, Frackowiak R, Lees A, Passingham R. Attention to action in Parkinson’s disease: impaired effective connectivity among frontal cortical regions. Brain J Neurol. 2002;125:276–89.CrossRefGoogle Scholar
  89. 89.
    Buhmann C, Glauche V, Sturenburg HJ, Oechsner M, Weiller C, Buchel C. Pharmacologically modulated fMRI – cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain. 2003;126:451–61.PubMedCrossRefGoogle Scholar
  90. 90.
    Turner RS, Grafton ST, McIntosh AR, DeLong MR, Hoffman JM. The functional anatomy of parkinsonian bradykinesia. NeuroImage. 2003;19:163–79.PubMedCrossRefGoogle Scholar
  91. 91.
    Grafton ST. Contributions of functional imaging to understanding parkinsonian symptoms. Curr Opin Neurobiol. 2004;14:715–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain. 1995;118(Pt 4):913–33.PubMedCrossRefGoogle Scholar
  93. 93.
    Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RS, Brooks DJ. Impaired mesial frontal and putamen activation in Parkinson’s disease: a positron emission tomography study. Ann Neurol. 1992;32:151–61.PubMedCrossRefGoogle Scholar
  94. 94.
    Catalan MJ, Ishii K, Honda M, Samii A, Hallett M. A PET study of sequential finger movements of varying length in patients with Parkinson’s disease. Brain J Neurol. 1999;122(Pt 3):483–95.CrossRefGoogle Scholar
  95. 95.
    Glickstein M, Stein J. Paradoxical movement in Parkinson’s disease. Trends Neurosci. 1991;14:480–2.PubMedCrossRefGoogle Scholar
  96. 96.
    Pessiglione M, Guehl D, Rolland AS, Francois C, Hirsch EC, Feger J, Tremblay L. Thalamic neuronal activity in dopamine-depleted primates: evidence for a loss of functional segregation within basal ganglia circuits. J Neurosci. 2005;25:1523–31.PubMedCrossRefGoogle Scholar
  97. 97.
    Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ. Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci. 2002;25:525–31.PubMedCrossRefGoogle Scholar
  98. 98.
    Gatev P, Darbin O, Wichmann T. Oscillations in the basal ganglia under normal conditions and in movement disorders. Mov Disord. 2006;21:1566–77.PubMedCrossRefGoogle Scholar
  99. 99.
    Goldberg JA, Rokni U, Boraud T, Vaadia E, Bergman H. Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials. J Neurosci Off J Soc Neurosci. 2004;24:6003–10.CrossRefGoogle Scholar
  100. 100.
    Raz A, Vaadia E, Bergman H. Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J Neurosci Off J Soc Neurosci. 2000;20:8559–71.CrossRefGoogle Scholar
  101. 101.
    Raz A, Frechter-Mazar V, Feingold A, Abeles M, Vaadia E, Bergman H. Activity of pallidal and striatal tonically active neurons is correlated in mptp-treated monkeys but not in normal monkeys. J Neurosci Off J Soc Neurosci. 2001;21:RC128.CrossRefGoogle Scholar
  102. 102.
    Bergman H, Feingold A, Nini A, Raz A, Slovin H, Abeles M, Vaadia E. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci. 1998;21:32–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Bar-Gad I, Bergman H. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurobiol. 2001;11:689–95.PubMedCrossRefGoogle Scholar
  104. 104.
    Soikkeli R, Partanen J, Soininen H, Paakkonen A, Riekkinen P Sr. Slowing of EEG in Parkinson’s disease. Electroencephalogr Clin Neurophysiol. 1991;79:159–65.PubMedCrossRefGoogle Scholar
  105. 105.
    Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 2007;30:357–64.PubMedCrossRefGoogle Scholar
  106. 106.
    Bergman H, Wichmann T, Karmon B, DeLong MR. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol. 1994;72:507–20.PubMedCrossRefGoogle Scholar
  107. 107.
    Filion M, Tremblay L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res. 1991;547:142–51.PubMedGoogle Scholar
  108. 108.
    Nini A, Feingold A, Slovin H, Bergman H. Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J Neurophysiol. 1995;74:1800–5.PubMedCrossRefGoogle Scholar
  109. 109.
    Hutchison WD, Lozano AM, Tasker RR, Lang AE, Dostrovsky JO. Identification and characterization of neurons with tremor-frequency activity in human globus pallidus. Exp Brain Res Exp Hirnforsch Exp Cereb. 1997;113:557–63.CrossRefGoogle Scholar
  110. 110.
    Levy R, Hutchison WD, Lozano AM, Dostrovsky JO. High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci Off J Soc Neurosci. 2000;20:7766–75.CrossRefGoogle Scholar
  111. 111.
    Merello M, Balej J, Delfino M, Cammarota A, Betti O, Leiguarda R. Apomorphine induces changes in GPi spontaneous outflow in patients with Parkinson’s disease. Mov Disord. 1999;14:45–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Swann N, Poizner H, Houser M, Gould S, Greenhouse I, Caj W, Strunk J, George J, Aron A. Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson’s disease. J Neuroscience. 2011;31:5721–9.CrossRefGoogle Scholar
  113. 113.
    Brown P, Eusebio A. Paradoxes of functional neurosurgery: clues from basal ganglia recordings. Mov Disord Off J Mov Disord Soc. 2008;23:12–20; quiz 158.CrossRefGoogle Scholar
  114. 114.
    Flink TA, Stelmach GE. Prehension characteristics in Parkinson’s disease patients. In: Nowak DA, Hermsdorfer J, editors. Sensorimotor control of grasping. Cambridge: Cambridge University Press; 2009. p. 311–25.CrossRefGoogle Scholar
  115. 115.
    Klockgether T, Dichgans J. Visual control of arm movement in Parkinson’s disease. Mov Disord. 1994;9:48–56.PubMedCrossRefGoogle Scholar
  116. 116.
    Ashkan K, Wallace B, Bell BA, Benabid AL. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease 1993–2003: where are we 10 years on? Br J Neurosurg. 2004;18:19–34.PubMedCrossRefGoogle Scholar
  117. 117.
    Deuschl G, Fogel W, Hahne M, Kupsch A, Muller D, Oechsner M, Sommer U, Ulm G, Vogt T, Volkmann J. Deep-brain stimulation for Parkinson’s disease. J Neurol. 2002;249(Suppl 3):III/36–9.PubMedGoogle Scholar
  118. 118.
    Deuschl G, Wenzelburger R, Kopper F, Volkmann J. Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: a therapy approaching evidence-based standards. J Neurol. 2003;250(Suppl 1):I43–6.PubMedCrossRefGoogle Scholar
  119. 119.
    Pahwa R, Lyons KE, Wilkinson SB, Simpson RK Jr, Ondo WG, Tarsy D, Norregaard T, Hubble JP, Smith DA, Hauser RA, Jankovic J. Long-term evaluation of deep brain stimulation of the thalamus. J Neurosurg. 2006;104:506–12.PubMedCrossRefGoogle Scholar
  120. 120.
    Volkmann J. Deep brain stimulation for the treatment of Parkinson’s disease. J Clin Neurophysiol. 2004;21:6–17.PubMedCrossRefGoogle Scholar
  121. 121.
    Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, Daniels C, Deutschlander A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloss M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn HM, Moringlane JR, Oertel W, Pinsker MO, Reichmann H, Reuss A, Schneider GH, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, Voges J. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2006;355:896–908.PubMedCrossRefGoogle Scholar
  122. 122.
    Boucai L, Cerquetti D, Merello M. Functional surgery for Parkinson’s disease treatment: a structured analysis of a decade of published literature. Br J Neurosurg. 2004;18:213–22.PubMedCrossRefGoogle Scholar
  123. 123.
    Schettino LF, Van Erp E, Hening W, Lessig S, Song D, Barba D, Poizner H. Deep brain stimulation of the subthalamic nucleus facilitates coordination of hand preshaping in Parkinson’s disease. Int J Neurosci. 2009;119:1905–24.PubMedCrossRefGoogle Scholar
  124. 124.
    Nowak DA, Topka H, Tisch S, Hariz M, Limousin P, Rothwell JC. The beneficial effects of subthalamic nucleus stimulation on manipulative finger force control in Parkinson’s disease. Exp Neurol. 2005;193:427–36.PubMedCrossRefGoogle Scholar
  125. 125.
    Wenzelburger R, Zhang BR, Poepping M, Schrader B, Muller D, Kopper F, Fietzek U, Mehdorn HM, Deuschl G, Krack P. Dyskinesias and grip control in Parkinson’s disease are normalized by chronic stimulation of the subthalamic nucleus. Ann Neurol. 2002a;52:240–3.PubMedCrossRefGoogle Scholar
  126. 126.
    Fellows SJ, Kronenburger M, Allert N, Coenen VA, Fromm C, Noth J, Weiss PH. The effect of subthalamic nucleus deep brain stimulation on precision grip abnormalities in Parkinson’s disease. Parkinsonism Relat Disord. 2006;12:149–54.PubMedCrossRefGoogle Scholar
  127. 127.
    Nowak DA, Tisch S, Hariz M, Limousin P, Topka H, Rothwell JC. Sensory timing cues improve akinesia of grasping movements in Parkinson’s disease: a comparison to the effects of subthalamic nucleus stimulation. Mov Disord. 2006;21:166–72.PubMedCrossRefGoogle Scholar
  128. 128.
    Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol. 2007;3:383–93.PubMedCrossRefGoogle Scholar
  129. 129.
    Fregni F, Simon DK, Wu A, Pascual-Leone A. Non-invasive brain stimulation for Parkinson’s disease: a systematic review and meta-analysis of the literature. J Neurol Neurosurg Psychiatry. 2005;76:1614–23.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Lomarev MP, Kanchana S, Bara-Jimenez W, Iyer M, Wassermann EM, Hallett M. Placebo-controlled study of rTMS for the treatment of Parkinson’s disease. Mov Disord. 2006;21:325–31.PubMedCrossRefGoogle Scholar
  131. 131.
    Gruner U, Eggers C, Ameli M, Sarfeld AS, Fink GR, Nowak DA. 1 Hz rTMS preconditioned by tDCS over the primary motor cortex in Parkinson’s disease: effects on bradykinesia of arm and hand. J Neural Transm. 2010;117:207–16.PubMedCrossRefGoogle Scholar
  132. 132.
    Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain J Neurol. 1994;117(Pt 4):847–58.CrossRefGoogle Scholar
  133. 133.
    Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48:1398–403.PubMedCrossRefGoogle Scholar
  134. 134.
    Duvoisin RD. Parkinson’s disease, a guide for patient and family. New York: Raven Press; 1984.Google Scholar
  135. 135.
    Duvoisin RC, Sage JI. The spectrum of Parkinson’s disease. In: Chokroverty S, editor. Movement disorders. New York: PMA Publishing Corp; 1990. p. 159–77.Google Scholar
  136. 136.
    Sage JI, Mark MH, editors. Practical neurology of the elderly, vol. 2. New York: Marcel Dekker, Inc; 1996.Google Scholar
  137. 137.
    Sage JI. Fluctuations of nonmotor symptoms. In: Factor SA, Weiner WJ, editors. Parkinson’s disease: diagnosis and clinical management. New York: Demos Medical Publishing; 2002. p. 455–63.Google Scholar
  138. 138.
    Fahn S, Elton RL, Members of the UPDRS Development Committee. Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Calne D, Goldstein M, editors. Recent developments in Parkinson’s disease, vol. 2. Florham Park: Macmillan; 1987. p. 153–63, 293–304.Google Scholar
  139. 139.
    Sage JI. Pain in Parkinson’s Disease. In: Reich, SG, section ed. Curr Treat Options Neurol. 2004;6:191–200.PubMedCrossRefGoogle Scholar
  140. 140.
    McHale DM, Sage JI, Sonsalla PK, Vitagliano D. Complex dystonia of Parkinson’s disease; clinical features and relation to plasma levodopa profile. Clin Neuropharmacol. 1990;13:164–70.PubMedCrossRefGoogle Scholar
  141. 141.
    Hillen ME, Sage JI. Nonmotor fluctuations in patients with Parkinson’s disease. Neurology. 1996;47:1180–3.PubMedCrossRefGoogle Scholar
  142. 142.
    Sage JI, Kortis HI, Sommer W. Evidence for the role of spinal cord systems in Parkinson’s disease associated pain. Clin Neuropharmacol. 1990;13:171–4.PubMedCrossRefGoogle Scholar
  143. 143.
    Sage JI, Mark MH. Basic mechanisms of motor fluctuations. Neurology. 1994;44(suppl 6):S10–4.PubMedGoogle Scholar
  144. 144.
    Sage JI, Mark MH, McHale DM, Sonsalla PK, Vitagliano D. Benefits of monitoring plasma levodopa in Parkinson’s disease patients with drug-induced chorea. Ann Neurol. 1991;29:623–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Walters A, McHale D, Sage J, Hening W, Bergen M. A blinded study of the suppressibility of involuntary movements in Huntington’s chorea, tardive dyskinesia and L-DOPA induced chorea. Clin Neuropharmacol. 1990;13:236–40.PubMedCrossRefGoogle Scholar
  146. 146.
    Hammon PS, Makeig S, Poizner H, Todorov E, de Sa V. Extracting trajectories and target endpoints from human EEG during a reaching task. IEEE Signal Process. 2008;25:69–77.CrossRefGoogle Scholar
  147. 147.
    Brandeis D, Michel CM, Koenig T, Gianotti LRR. Integration of electrical neuroimaging with other functional imaging methods. In: Michel CM, et al., editors. Electrical neuroimaging. Cambridge: Cambridge University Press; 2009. p. 215–32.CrossRefGoogle Scholar
  148. 148.
    Mulert C, Lemieux L, editors. EEG – fMRI: physiological basis, technique, and applications. Berlin/Heidelberg: Springer; 2010.Google Scholar
  149. 149.
    Ullsperger M, Debener S, editors. Simultaneous EEG and fMRI: recording, analysis, and application. New York: Oxford University Press; 2010.Google Scholar
  150. 150.
    Wingeier B, Tcheng T, Koop MM, Hill BC, Heit G, Bronte-Stewart HM. Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease. Exp Neurol. 2006;197:244–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Neural ComputationUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of NeurologyRobert Wood Johnson Medical SchoolNew BrunswickUSA

Personalised recommendations