Advertisement

Hand Function pp 137-162 | Cite as

Hand Function in Tetraplegia

  • Tuğçe Özekli Mısırlıoğlu
  • Şafak Sahir Karamehmetoğlu
Chapter

Abstract

Cervical spinal cord injury, tetraplegia, results in impairment or loss of motor and/or sensory function in the arms, as well as the trunk, legs, and pelvic organs. Among all, impaired motor and sensory function in arms and hands is one of the most debilitating results of the C-SCI.

Restoration of hand and arm function during rehabilitation is of crucial importance considering their key role in the ADL, the level of independence, quality of life, and community participation. Evaluation of the efficacy of rehabilitation and experimental interventions can only be achieved by standardized tests that assess upper extremity function validly and reliably. Numerous tests and/or outcome measures have been designed to evaluate upper extremity function in humans; however, only a few of them have been proved to be valid and reliable for the assessment of individuals with tetraplegia.

The tests that evaluate the upper limb function can be categorized according to the three levels of the International Classification of Functioning Disability and Health, namely “body function and structure,” “activity,” and “participation.” Among these, tests that evaluate the performance of arm and hand at the “activity” level by assessing the ADL tasks are continuously being recommended as standard outcome measures, since they are believed to reflect patients’ real performance. “Action Research Arm Test,” “Sollerman Hand Function Test,” “The Capabilities of Upper Extremity Questionnaire,” “Grasp and Release Test,” “Van Lieshout Test,” “Quadriplegia Index of Function,” and “SCIM-III” are examples to the most commonly used outcome measures at the level of activities.

Keywords

Tetraplegia Hand Wrist Finger Functional assessment 

References

  1. 1.
    American International Medical Society of Paraplegia. International standards for neurologic and functional classification of spinal cord injury, Revised 2000. Chicago: American Spinal Injury Association/International Medical Society of Paraplegia; 2002.Google Scholar
  2. 2.
    Velstra IM, Bolliger M, Tanadini LG, Baumberger M, Abel R, Rietman JS, et al. Prediction and stratification of upper limb function and self-care in acute cervical spinal cord injury with the graded redefined assessment of strength, sensibility, and prehension (GRASSP). Neurorehabil Neural Repair. 2014;28(7):632–42. Epub 2014/02/26.  https://doi.org/10.1177/1545968314521695.PubMedCrossRefGoogle Scholar
  3. 3.
    Punj V, Curtin C. Understanding and overcoming barriers to upper limb surgical reconstruction after tetraplegia: the need for interdisciplinary collaboration. Arch Phys Med Rehabil. 2016;97(6 Suppl):S81–7. Epub 2016/05/29.  https://doi.org/10.1016/j.apmr.2015.11.022.PubMedCrossRefGoogle Scholar
  4. 4.
    Hanson RW, Franklin MR. Sexual loss in relation to other functional losses for spinal cord injured males. Arch Phys Med Rehabil. 1976;57(6):291–3. Epub 1976/06/01.PubMedGoogle Scholar
  5. 5.
    Whiteneck G, Adler C, Biddle A. Outcomes following traumatic spinal cord injury: clinical practice guidelines for health–care professionals. Washington, DC: Paralyzed Veterans of America; 1999.Google Scholar
  6. 6.
    Spooren AI, Janssen-Potten YJ, Kerckhofs E, Seelen HA. Outcome of motor training programmes on arm and hand functioning in patients with cervical spinal cord injury according to different levels of the ICF: a systematic review. J Rehabil Med. 2009;41(7):497–505. Epub 2009/06/23.  https://doi.org/10.2340/16501977-0387.PubMedCrossRefGoogle Scholar
  7. 7.
    World Health Organization. International classification of impairments, disabilities and handicaps: a manual classification relating to the consequences of diseases. Geneva: WHO; 1980.Google Scholar
  8. 8.
    World Health Organization. International classification of functioning, disability and health (ICF). Geneva: WHO; 2001.Google Scholar
  9. 9.
    Dunn JA, Sinnott KA, Bryden AM, Connolly SJ, Rothwell AG. Measurement issues related to upper limb interventions in persons who have tetraplegia. Hand Clin. 2008;24(2):161–8, v. Epub 2008/05/06.  https://doi.org/10.1016/j.hcl.2008.01.005.PubMedCrossRefGoogle Scholar
  10. 10.
    World Health Organization. International Classification of Functioning, Disability and Health (ICF) (online). https://www.icf-elearning.com/wp-content/uploads/articulate_uploads/ICF%20e-Learning%20Tool_V2%20-%20Storyline%20output/story_html5.html [March 18, 2018].
  11. 11.
    Spooren AI, Janssen-Potten YJ, Snoek GJ, Ijzerman MJ, Kerckhofs E, Seelen HA. Rehabilitation outcome of upper extremity skilled performance in persons with cervical spinal cord injuries. J Rehabil Med. 2008;40(8):637–44. Epub 2008/11/21.  https://doi.org/10.2340/16501977-0231.PubMedCrossRefGoogle Scholar
  12. 12.
    Sinnott KA, Dunn JA, Wangdell J, Johanson ME, Hall AS, Post MW. Measurement of outcomes of upper limb reconstructive surgery for tetraplegia. Arch Phys Med Rehabil. 2016;97(6 Suppl):S169–81. Epub 2016/05/29.  https://doi.org/10.1016/j.apmr.2015.10.110.PubMedCrossRefGoogle Scholar
  13. 13.
    van Tuijl JH, Janssen-Potten YJ, Seelen HA. Evaluation of upper extremity motor function tests in tetraplegics. Spinal Cord. 2002;40(2):51–64. Epub 2002/04/05.PubMedCrossRefGoogle Scholar
  14. 14.
    Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med. 2011;34(6):535–46. Epub 2012/02/15.  https://doi.org/10.1179/204577211X13207446293695.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Waring WP 3rd, Biering-Sorensen F, Burns S, Donovan W, Graves D, Jha A, et al. _ 2009 review and revisions of the international standards for the neurological classification of spinal cord injury. J Spinal Cord Med. 2010;33(4):346–52. Epub 2010/11/11.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kirshblum SC, Biering-Sorensen F, Betz R, Burns S, Donovan W, Graves DE, et al. International standards for neurological classification of spinal cord injury: cases with classification challenges. J Spinal Cord Med. 2014;37(2):120–7. Epub 2014/02/25.  https://doi.org/10.1179/2045772314Y.0000000196.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    International standards for the neurological classification of spinal cord injury revised 2011 (booklet). Atlanta: American Spinal Injury Association; 2011.Google Scholar
  18. 18.
    International Standards for Neurological Classification of SCI (ISNCSCI) Worksheet. Available from: http://asia-spinalinjury.org/information/downloads/
  19. 19.
    van Middendorp JJ, Hosman AJ, Pouw MH, Group E-SS, Van de Meent H. ASIA impairment scale conversion in traumatic SCI: is it related with the ability to walk? A descriptive comparison with functional ambulation outcome measures in 273 patients. Spinal Cord. 2009;47(7):555–60. Epub 2008/12/24.  https://doi.org/10.1038/sc.2008.162.PubMedCrossRefGoogle Scholar
  20. 20.
    van Middendorp JJ, Hosman AJ, Donders AR, Pouw MH, Ditunno JF Jr, Curt A, et al. A clinical prediction rule for ambulation outcomes after traumatic spinal cord injury: a longitudinal cohort study. Lancet. 2011;377(9770):1004–10. Epub 2011/03/08.  https://doi.org/10.1016/S0140-6736(10)62276-3.PubMedCrossRefGoogle Scholar
  21. 21.
    Waters RL, Adkins RH, Yakura JS, Sie I. Motor and sensory recovery following complete tetraplegia. Arch Phys Med Rehabil. 1993;74(3):242–7. Epub 1993/03/01.PubMedGoogle Scholar
  22. 22.
    Blaustein DM, Zafonte R, Thomas D, Herbison GJ, Ditunno JF. Predicting recovery of motor complete quadriplegic patients. 24 hour v 72 hour motor index scores. Am J Phys Med Rehabil. 1993;72(5):306–11. Epub 1993/10/01.PubMedCrossRefGoogle Scholar
  23. 23.
    Lazar RB, Yarkony GM, Ortolano D, Heinemann AW, Perlow E, Lovell L, et al. Prediction of functional outcome by motor capability after spinal cord injury. Arch Phys Med Rehabil. 1989;70(12):819–22. Epub 1989/11/01.PubMedGoogle Scholar
  24. 24.
    Mange KC, Ditunno JF Jr, Herbison GJ, Jaweed MM. Recovery of strength at the zone of injury in motor complete and motor incomplete cervical spinal cord injured patients. Arch Phys Med Rehabil. 1990;71(8):562–5. Epub 1990/07/01.PubMedGoogle Scholar
  25. 25.
    Maynard FM, Reynolds GG, Fountain S, Wilmot C, Hamilton R. Neurological prognosis after traumatic quadriplegia. Three-year experience of California regional spinal cord injury care system. J Neurosurg. 1979;50(5):611–6. Epub 1979/05/01.  https://doi.org/10.3171/jns.1979.50.5.0611.PubMedCrossRefGoogle Scholar
  26. 26.
    Ditunno JF Jr, Burns AS, Marino RJ. Neurological and functional capacity outcome measures: essential to spinal cord injury clinical trials. J Rehabil Res Dev. 2005;42(3 Suppl 1):35–41. Epub 2005/10/01.PubMedGoogle Scholar
  27. 27.
    Tanadini LG, Steeves JD, Hothorn T, Abel R, Maier D, Schubert M, et al. Identifying homogeneous subgroups in neurological disorders: unbiased recursive partitioning in cervical complete spinal cord injury. Neurorehabil Neural Repair. 2014;28(6):507–15. Epub 2014/01/31.  https://doi.org/10.1177/1545968313520413.PubMedCrossRefGoogle Scholar
  28. 28.
    Zariffa J, Kramer JL, Fawcett JW, Lammertse DP, Blight AR, Guest J, et al. Characterization of neurological recovery following traumatic sensorimotor complete thoracic spinal cord injury. Spinal Cord. 2011;49(3):463–71. Epub 2010/10/13.  https://doi.org/10.1038/sc.2010.140.PubMedCrossRefGoogle Scholar
  29. 29.
    McDowell CL, Moberg EA, Smith AG. International conference on surgical rehabilitation of the upper limb in tetraplegia. J Hand Surg. 1979;4:387–90.CrossRefGoogle Scholar
  30. 30.
    McDowell CL, Moberg E, House JH. Second international conference on surgical rehabilitation of the upper limb in traumatic quadriplegia. J Hand Surg [Am]. 1986;11:604–8.CrossRefGoogle Scholar
  31. 31.
    Medical Research Council. Aids to the investigation of the peripheral nervous system memorandum no 45. London: Her Majesty’s Stationery Office; 1976.Google Scholar
  32. 32.
    Herbison GJ, Isaac Z, Cohen ME, Ditunno JF Jr. Strength post-spinal cord injury: myometer vs manual muscle test. Spinal Cord. 1996;34(9):543–8.. Epub 1996/09/01PubMedCrossRefGoogle Scholar
  33. 33.
    Frese E, Brown M, Norton BJ. Clinical reliability of manual muscle testing. Middle trapezius and gluteus medius muscles. Phys Ther. 1987;67(7):1072–6.. Epub 1987/07/01PubMedCrossRefGoogle Scholar
  34. 34.
    Savic G, Bergstrom EM, Frankel HL, Jamous MA, Jones PW. Inter-rater reliability of motor and sensory examinations performed according to American Spinal Injury Association standards. Spinal Cord. 2007;45(6):444–51. Epub 2007/03/28.  https://doi.org/10.1038/sj.sc.3102044.PubMedCrossRefGoogle Scholar
  35. 35.
    Noreau L, Vachon J. Comparison of three methods to assess muscular strength in individuals with spinal cord injury. Spinal Cord. 1998;36(10):716–23. Epub 1998/11/04.PubMedCrossRefGoogle Scholar
  36. 36.
    Schwartz S, Cohen ME, Herbison GJ, Shah A. Relationship between two measures of upper extremity strength: manual muscle test compared to hand-held myometry. Arch Phys Med Rehabil. 1992;73(11):1063–8. Epub 1992/11/01.PubMedGoogle Scholar
  37. 37.
    Marciello MA, Herbison GJ, Ditunno JF Jr, Marino RJ, Cohen ME. Wrist strength measured by myometry as an indicator of functional independence. J Neurotrauma. 1995;12(1):99–106. Epub 1995/02/01.  https://doi.org/10.1089/neu.1995.12.99.PubMedCrossRefGoogle Scholar
  38. 38.
    Sisto SA, Dyson-Hudson T. Dynamometry testing in spinal cord injury. J Rehabil Res Dev. 2007;44(1):123–36. Epub 2007/06/07PubMedCrossRefGoogle Scholar
  39. 39.
    Mulcahey MJ, Betz RR, Smith BT, Weiss AA. A prospective evaluation of upper extremity tendon transfers in children with cervical spinal cord injury. J Pediatr Orthop. 1999;19(3):319–28. Epub 1999/05/27PubMedGoogle Scholar
  40. 40.
    Vanden Berghe A, Van Laere M, Hellings S, Vercauteren M. Reconstruction of the upper extremity in tetraplegia: functional assessment, surgical procedures and rehabilitation. Paraplegia. 1991;29(2):103–12. Epub 1991/02/01.  https://doi.org/10.1038/sc.1991.14.CrossRefGoogle Scholar
  41. 41.
    Helliwell P, Howe A, Wright V. Functional assessment of the hand: reproducibility, acceptability, and utility of a new system for measuring strength. Ann Rheum Dis. 1987;46(3):203–8. Epub 1987/03/01.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Mathiowetz V, Weber K, Volland G, Kashman N. Reliability and validity of grip and pinch strength evaluations. J Hand Surg Am. 1984;9(2):222–6. Epub 1984/03/01.PubMedCrossRefGoogle Scholar
  43. 43.
    Haward BM, Griffin MJ. Repeatability of grip strength and dexterity tests and the effects of age and gender. Int Arch Occup Environ Health. 2002;75(1–2):111–9. Epub 2002/03/20.PubMedGoogle Scholar
  44. 44.
    May LA, Burnham RS, Steadward RD. Assessment of isokinetic and hand-held dynamometer measures of shoulder rotator strength among individuals with spinal cord injury. Arch Phys Med Rehabil. 1997;78(3):251–5. Epub 1997/03/01.PubMedCrossRefGoogle Scholar
  45. 45.
    Levi R, Hultling C, Seiger A. The Stockholm Spinal Cord Injury Study. 3. Health-related issues of the Swedish annual level-of-living survey in SCI subjects and controls. Paraplegia. 1995;33(12):726–30. Epub 1995/12/01.  https://doi.org/10.1038/sc.1995.152.PubMedCrossRefGoogle Scholar
  46. 46.
    Skold C, Levi R, Seiger A. Spasticity after traumatic spinal cord injury: nature, severity, and location. Arch Phys Med Rehabil. 1999;80(12):1548–57. Epub 1999/12/22.PubMedCrossRefGoogle Scholar
  47. 47.
    Maynard FM, Karunas RS, Waring WP 3rd. Epidemiology of spasticity following traumatic spinal cord injury. Arch Phys Med Rehabil. 1990;71(8):566–9. Epub 1990/07/01.PubMedGoogle Scholar
  48. 48.
    Adams MM, Hicks AL. Spasticity after spinal cord injury. Spinal Cord. 2005;43(10):577–86. Epub 2005/04/20.  https://doi.org/10.1038/sj.sc.3101757.PubMedCrossRefGoogle Scholar
  49. 49.
    Wangdell J, Friden J. Rehabilitation after spasticity-correcting upper limb surgery in tetraplegia. Arch Phys Med Rehabil. 2016;97(6 Suppl):S136–43. Epub 2016/05/29.  https://doi.org/10.1016/j.apmr.2016.01.033.PubMedCrossRefGoogle Scholar
  50. 50.
    Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–7. Epub 1987/02/01.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Haugh AB, Pandyan AD, Johnson GR. A systematic review of the Tardieu Scale for the measurement of spasticity. Disabil Rehabil. 2006;28(15):899–907. Epub 2006/07/25.  https://doi.org/10.1080/09638280500404305.PubMedCrossRefGoogle Scholar
  52. 52.
    Adams MM, Ginis KA, Hicks AL. The spinal cord injury spasticity evaluation tool: development and evaluation. Arch Phys Med Rehabil. 2007;88(9):1185–92. Epub 2007/09/11.  https://doi.org/10.1016/j.apmr.2007.06.012.PubMedCrossRefGoogle Scholar
  53. 53.
    Cook KF, Teal CR, Engebretson JC, Hart KA, Mahoney JS, Robinson-Whelen S, et al. Development and validation of Patient Reported Impact of Spasticity Measure (PRISM). J Rehabil Res Dev. 2007;44(3):363–71. Epub 2008/02/06.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kalsi-Ryan S, Curt A, Fehlings MG, Verrier MC. Assessment of the hand in tetraplegia using the Graded Redefined Assessment of Strength, Sensibility and Prehension (GRASSP): impairment versus function. Top Spinal Cord Inj Rehabil. 2009;14(4):34–46.CrossRefGoogle Scholar
  55. 55.
    Kalsi-Ryan S, Beaton D, Curt A, Duff S, Popovic MR, Rudhe C, et al. The Graded Redefined Assessment of Strength Sensibility and Prehension: reliability and validity. J Neurotrauma. 2012;29(5):905–14. Epub 2011/05/17.  https://doi.org/10.1089/neu.2010.1504.PubMedCrossRefGoogle Scholar
  56. 56.
    Kalsi-Ryan S, Beaton D, Ahn H, Askes H, Drew B, Curt A, et al. Responsiveness, sensitivity, and minimally detectable difference of the Graded and Redefined Assessment of Strength, Sensibility, and Prehension, version 1.0. J Neurotrauma. 2016;33(3):307–14. Epub 2015/11/13.  https://doi.org/10.1089/neu.2015.4217.PubMedCrossRefGoogle Scholar
  57. 57.
    Velstra IM, Fellinghauer C, Abel R, Kalsi-Ryan S, Rupp R, Curt A. The Graded and Redefined Assessment of Strength, Sensibility, and Prehension version 2 provides interval measure properties. J Neurotrauma. 2018;35(6):854–63. Epub 2017/11/22.  https://doi.org/10.1089/neu.2017.5195.PubMedCrossRefGoogle Scholar
  58. 58.
    Lyle RC. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res. 1981;4(4):483–92. Epub 1981/01/01.PubMedCrossRefGoogle Scholar
  59. 59.
    Yozbatiran N, Der-Yeghiaian L, Cramer SC. A standardized approach to performing the action research arm test. Neurorehabil Neural Repair. 2008;22(1):78–90. Epub 2007/08/21.  https://doi.org/10.1177/1545968307305353.PubMedCrossRefGoogle Scholar
  60. 60.
    Thorsen R, Binda L, Chiaramonte S, Dalla Costa D, Redaelli T, Occhi E, et al. Correlation among lesion level, muscle strength and hand function in cervical spinal cord injury. Eur J Phys Rehabil Med. 2014;50(1):31–8. Epub 2013/07/04.PubMedGoogle Scholar
  61. 61.
    Sollerman C, Ejeskar A. Sollerman hand function test. A standardised method and its use in tetraplegic patients. Scand J Plast Reconstr Surg Hand Surg. 1995;29(2):167–76. Epub 1995/06/01.PubMedCrossRefGoogle Scholar
  62. 62.
    Mahoney FI, Barthel DW. Functional evaluation: the Barthel index. Md State Med J. 1965;14:61–5. Epub 1965/02/01.PubMedGoogle Scholar
  63. 63.
    Granger CV, Albrecht GL, Hamilton BB. Outcome of comprehensive medical rehabilitation: measurement by PULSES profile and the Barthel index. Arch Phys Med Rehabil. 1979;60(4):145–54. Epub 1979/04/01.PubMedGoogle Scholar
  64. 64.
    Yarkony GM, Roth EJ, Heinemann AW, Wu YC, Katz RT, Lovell L. Benefits of rehabilitation for traumatic spinal cord injury. Multivariate analysis in 711 patients. Arch Neurol. 1987;44(1):93–6. Epub 1987/01/01.PubMedCrossRefGoogle Scholar
  65. 65.
    Yarkony GM, Roth EJ, Heinemann AW, Lovell L, Wu YC. Functional skills after spinal cord injury rehabilitation: three-year longitudinal follow-up. Arch Phys Med Rehabil. 1988;69(2):111–4. Epub 1988/02/01.PubMedGoogle Scholar
  66. 66.
    Anderson K, Aito S, Atkins M, Biering-Sorensen F, Charlifue S, Curt A, et al. Functional recovery measures for spinal cord injury: an evidence-based review for clinical practice and research. J Spinal Cord Med. 2008;31(2):133–44. Epub 2008/06/28.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kucukdeveci AA, Yavuzer G, Tennant A, Suldur N, Sonel B, Arasil T. Adaptation of the modified Barthel index for use in physical medicine and rehabilitation in Turkey. Scand J Rehabil Med. 2000;32(2):87–92. Epub 2000/06/15.PubMedCrossRefGoogle Scholar
  68. 68.
    Hamilton BB, Granger CV, Sherwin FS, Zielezny M, Tashman JS. A uniform national data system for medical rehabilitation. In: Fuhrer MJ, editor. Rehabilitation outcomes analysis and measurement. Baltimore: Paul H. Brookes Publishing Co.; 1987. p. 137–47.Google Scholar
  69. 69.
    Keith RA, Granger CV, Hamilton BB, Sherwin FS. The functional independence measure: a new tool for rehabilitation. Adv Clin Rehabil. 1987;1:6–18. Epub 1987/01/01.PubMedGoogle Scholar
  70. 70.
    Hamilton BB, Laughlin JA, Fiedler RC, Granger CV. Interrater reliability of the 7-level functional independence measure (FIM). Scand J Rehabil Med. 1994;26(3):115–9. Epub 1994/09/01.PubMedGoogle Scholar
  71. 71.
    Yavuz N, Tezyurek M, Akyuz M. A comparison of two functional tests in quadriplegia: the quadriplegia index of function and the functional independence measure. Spinal Cord. 1998;36(12):832–7. Epub 1999/01/09.PubMedCrossRefGoogle Scholar
  72. 72.
    Marino RJ, Huang M, Knight P, Herbison GJ, Ditunno JF Jr, Segal M. Assessing selfcare status in quadriplegia: comparison of the quadriplegia index of function (QIF) and the functional independence measure (FIM). Paraplegia. 1993;31(4):225–33. Epub 1993/04/01.  https://doi.org/10.1038/sc.1993.41.PubMedCrossRefGoogle Scholar
  73. 73.
    Itzkovich M, Gelernter I, Biering-Sorensen F, Weeks C, Laramee MT, Craven BC, et al. The Spinal Cord Independence Measure (SCIM) version III: reliability and validity in a multi-center international study. Disabil Rehabil. 2007;29(24):1926–33. Epub 2007/09/14.  https://doi.org/10.1080/09638280601046302.PubMedCrossRefGoogle Scholar
  74. 74.
    Oleson CV, Marino RJ. Responsiveness and concurrent validity of the revised capabilities of upper extremity-questionnaire (CUE-Q) in patients with acute tetraplegia. Spinal Cord. 2014;52(8):625–8. Epub 2014/06/04.  https://doi.org/10.1038/sc.2014.77.PubMedCrossRefGoogle Scholar
  75. 75.
    Menter RR, Whiteneck GG, Charlifue SW, Gerhart K, Solnick SJ, Brooks CA, et al. Impairment, disability, handicap and medical expenses of persons aging with spinal cord injury. Paraplegia. 1991;29(9):613–9. Epub 1991/11/01.  https://doi.org/10.1038/sc.1991.90.PubMedCrossRefGoogle Scholar
  76. 76.
    Muslumanoglu L, Aki S, Ozturk Y, Soy D, Filiz M, Karan A, et al. Motor, sensory and functional recovery in patients with spinal cord lesions. Spinal Cord. 1997;35(6):386–9. Epub 1997/06/01.PubMedCrossRefGoogle Scholar
  77. 77.
    Warschausky S, Kay JB, Kewman DG. Hierarchical linear modeling of FIM instrument growth curve characteristics after spinal cord injury. Arch Phys Med Rehabil. 2001;82(3):329–34. Epub 2001/03/14.  https://doi.org/10.1053/apmr.2001.21510.PubMedCrossRefGoogle Scholar
  78. 78.
    Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. The Canadian occupational performance measure: an outcome measure for occupational therapy. Can J Occup Ther. 1990;57(2):82–7. Epub 1990/04/01.  https://doi.org/10.1177/000841749005700207.PubMedCrossRefGoogle Scholar
  79. 79.
    The Canadian Occupational Performance Measure [16.04.2018]. Available from: http://www.thecopm.ca/learn/.
  80. 80.
    Duruoz MT, Poiraudeau S, Fermanian J, Menkes CJ, Amor B, Dougados M, et al. Development and validation of a rheumatoid hand functional disability scale that assesses functional handicap. J Rheumatol. 1996;23(7):1167–72. Epub 1996/07/01.PubMedGoogle Scholar
  81. 81.
    Misirlioglu TO, Unalan H, Karamehmetoglu SS. Validation of Duruoz hand index in patients with tetraplegia. J Hand Ther. 2016;29(3):269–74. Epub 2015/11/07.  https://doi.org/10.1016/j.jht.2015.10.001.PubMedCrossRefGoogle Scholar
  82. 82.
    Catz A, Itzkovich M, Agranov E, Ring H, Tamir A. SCIM – spinal cord independence measure: a new disability scale for patients with spinal cord lesions. Spinal Cord. 1997;35(12):850–6. Epub 1998/01/16.PubMedCrossRefGoogle Scholar
  83. 83.
    Catz A, Itzkovich M, Steinberg F, Philo O, Ring H, Ronen J, et al. The Catz-Itzkovich SCIM: a revised version of the Spinal Cord Independence Measure. Disabil Rehabil. 2001;23(6):263–8. Epub 2001/05/05.PubMedCrossRefGoogle Scholar
  84. 84.
    Catz A, Itzkovich M, Agranov E, Ring H, Tamir A. The spinal cord independence measure (SCIM): sensitivity to functional changes in subgroups of spinal cord lesion patients. Spinal Cord. 2001;39(2):97–100. Epub 2001/06/13.PubMedCrossRefGoogle Scholar
  85. 85.
    Catz A, Itzkovich M, Tesio L, Biering-Sorensen F, Weeks C, Laramee MT, et al. A multicenter international study on the Spinal Cord Independence Measure, version III: Rasch psychometric validation. Spinal Cord. 2007;45(4):275–91. Epub 2006/08/16.  https://doi.org/10.1038/sj.sc.3101960.PubMedCrossRefGoogle Scholar
  86. 86.
    Fekete C, Eriks-Hoogland I, Baumberger M, Catz A, Itzkovich M, Luthi H, et al. Development and validation of a self-report version of the Spinal Cord Independence Measure (SCIM III). Spinal Cord. 2013;51(1):40–7. Epub 2012/08/15.  https://doi.org/10.1038/sc.2012.87.PubMedCrossRefGoogle Scholar
  87. 87.
    Rudhe C, van Hedel HJ. Upper extremity function in persons with tetraplegia: relationships between strength, capacity, and the spinal cord independence measure. Neurorehabil Neural Repair. 2009;23(5):413–21. Epub 2009/03/06.  https://doi.org/10.1177/1545968308331143.PubMedCrossRefGoogle Scholar
  88. 88.
    Taricco M, Apolone G, Colombo C, Filardo G, Telaro E, Liberati A. Functional status in patients with spinal cord injury: a new standardized measurement scale. Gruppo Interdisciplinare Valutazione Interventi Riabilitativi. Arch Phys Med Rehabil. 2000;81(9):1173–80. Epub 2000/09/15.PubMedCrossRefGoogle Scholar
  89. 89.
    Thrope G, Stroh K, Baco A, editors. Standardized object test: for quantitative assessment of hand grasp function using the C.W.R.U. upper extremity neuroprosthesis. Proceedings of the RESNA. New Orleans; 1989.Google Scholar
  90. 90.
    Wuolle KS, Van Doren CL, Thrope GB, Keith MW, Peckham PH. Development of a quantitative hand grasp and release test for patients with tetraplegia using a hand neuroprosthesis. J Hand Surg Am. 1994;19:209–18.PubMedCrossRefGoogle Scholar
  91. 91.
    Mulcahey MJ, Smith BT, Betz RR. Psychometric rigor of the grasp and release test for measuring functional limitation of persons with tetraplegia: a preliminary analysis. J Spinal Cord Med. 2004;27(1):41–6. Epub 2004/05/26.PubMedCrossRefGoogle Scholar
  92. 92.
    Mulcahey MJ, Hutchinson D, Kozin S. Assessment of upper limb in tetraplegia: considerations in evaluation and outcomes research. J Rehabil Res Dev. 2007;44(1):91–102. Epub 2007/06/07.PubMedCrossRefGoogle Scholar
  93. 93.
    Mulcahey MJ, Betz RR, Kozin SH, Smith BT, Hutchinson D, Lutz C. Implantation of the freehand system during initial rehabilitation using minimally invasive techniques. Spinal Cord. 2004;42(3):146–55. Epub 2004/03/06.  https://doi.org/10.1038/sj.sc.3101573.PubMedCrossRefGoogle Scholar
  94. 94.
    Smith BT, Mulcahey MJ, Betz RR. Quantitative comparison of grasp and release abilities with and without functional neuromuscular stimulation in adolescents with tetraplegia. Paraplegia. 1996;34(1):16–23. Epub 1996/01/01.PubMedGoogle Scholar
  95. 95.
    Peckham PH, Keith MW, Kilgore KL, Grill JH, Wuolle KS, Thrope GB, et al. Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study. Arch Phys Med Rehabil. 2001;82(10):1380–8. Epub 2001/10/06.  https://doi.org/10.1053/apmr.2001.25910.PubMedCrossRefGoogle Scholar
  96. 96.
    Kilgore KL, Peckham PH, Keith MW, Thrope GB, Wuolle KS, Bryden AM, et al. An implanted upper-extremity neuroprosthesis. Follow-up of five patients. J Bone Joint Surg Am. 1997;79(4):533–41. Epub 1997/04/01.PubMedCrossRefGoogle Scholar
  97. 97.
    Marino RJ, Shea JA, Stineman MG. The capabilities of upper extremity instrument: reliability and validity of a measure of functional limitation in tetraplegia. Arch Phys Med Rehabil. 1998;79(12):1512–21. Epub 1998/12/23.PubMedCrossRefGoogle Scholar
  98. 98.
    Akhavan A, Baker K, Cannon GM, Davies B, Horton JA 3rd, Docimo SG. Pilot evaluation of functional questionnaire for predicting ability of patients with tetraplegia to self-catheterize after continent diversion. J Spinal Cord Med. 2007;30(5):491–6. Epub 2007/12/21.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Dunn J, Sinnott KA, Nunnerley J, Scheuringer M. Utilisation of patient perspective to validate clinical measures of outcome following spinal cord injury. Disabil Rehabil. 2009;31(12):967–75. Epub 2009/01/01.  https://doi.org/10.1080/09638280802358407.PubMedCrossRefGoogle Scholar
  100. 100.
    Thorsen R, Ferrarin M, Spadone R, Frigo C. Functional control of the hand in tetraplegics based on residual synergistic EMG activity. Artif Organs. 1999;23(5):470–3. Epub 1999/06/23.PubMedCrossRefGoogle Scholar
  101. 101.
    Post M. Pilot-onderzoek Van Lieshout Test (The Van Lieshout Test: a pilot study). Hoensbroek: iRv. (in Dutch); 2000.Google Scholar
  102. 102.
    Van Lieshout G. User manual Van Lieshout Test. Hoensbroek: iRv; 2003.Google Scholar
  103. 103.
    Spooren AI, Janssen-Potten YJ, Post MW, Kerckhofs E, Nene A, Seelen HA. Measuring change in arm hand skilled performance in persons with a cervical spinal cord injury: responsiveness of the Van Lieshout Test. Spinal Cord. 2006;44(12):772–9. Epub 2006/07/05.  https://doi.org/10.1038/sj.sc.3101957.PubMedCrossRefGoogle Scholar
  104. 104.
    Post MW, Van Lieshout G, Seelen HA, Snoek GJ, Ijzerman MJ, Pons C. Measurement properties of the short version of the Van Lieshout test for arm/hand function of persons with tetraplegia after spinal cord injury. Spinal Cord. 2006;44(12):763–71. Epub 2006/06/15.  https://doi.org/10.1038/sj.sc.3101937.PubMedCrossRefGoogle Scholar
  105. 105.
    Fattal C. Motor capacities of upper limbs in tetraplegics: a new scale for the assessment of the results of functional surgery on upper limbs. Spinal Cord. 2004;42(2):80–90. Epub 2004/02/07.  https://doi.org/10.1038/sj.sc.3101551.PubMedCrossRefGoogle Scholar
  106. 106.
    Fattal C, Thery JM, Micallef JP. Validation of the motor capacities scale: a specific evaluation of manual abilities in tetraplegics who undergo functional surgery of the upper limbs. Ann Readapt Med Phys. 2004;47(8):537–45. Epub 2004/10/07.  https://doi.org/10.1016/j.annrmp.2004.04.003.PubMedCrossRefGoogle Scholar
  107. 107.
    Marino RJ, Patrick M, Albright W, Leiby BE, Mulcahey M, Schmidt-Read M, et al. Development of an objective test of upper-limb function in tetraplegia: the capabilities of upper extremity test. Am J Phys Med Rehabil. 2012;91(6):478–86. Epub 2012/04/04.  https://doi.org/10.1097/PHM.0b013e31824fa6cc.PubMedCrossRefGoogle Scholar
  108. 108.
    Marino RJ, Kern SB, Leiby B, Schmidt-Read M, Mulcahey MJ. Reliability and validity of the capabilities of upper extremity test (CUE-T) in subjects with chronic spinal cord injury. J Spinal Cord Med. 2015;38(4):498–504. Epub 2014/10/10.  https://doi.org/10.1179/2045772314Y.0000000272.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kapadia N, Zivanovic V, Verrier M, Popovic MR. Toronto rehabilitation institute-hand function test: assessment of gross motor function in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil. 2012;18(2):167–86. Epub 2013/03/06.  https://doi.org/10.1310/sci1802-167.PubMedCrossRefGoogle Scholar
  110. 110.
    Rogers JC, Figone JJ. Traumatic quadriplegia: follow-up study of self-care skills. Arch Phys Med Rehabil. 1980;61(7):316–21. Epub 1980/07/01.PubMedGoogle Scholar
  111. 111.
    Gresham GE, Labi ML, Dittmar SS. Quadriplegia index of function (abstract). Arch Phys Med Rehabil. 1980;61:493.Google Scholar
  112. 112.
    Labi ML, Dittmar SS, Hicks JT. Quadriplegia index of function: one-year follow up (abstract). Arch Phys Med Rehabil. 1981;62:532–3.Google Scholar
  113. 113.
    Gresham GE, Labi ML, Dittmar SS, Hicks JT, Joyce SZ, Stehlik MA. The Quadriplegia Index of Function (QIF): sensitivity and reliability demonstrated in a study of thirty quadriplegic patients. Paraplegia. 1986;24(1):38–44. Epub 1986/02/01.  https://doi.org/10.1038/sc.1986.7.PubMedCrossRefGoogle Scholar
  114. 114.
    Stroh-Wuolle K, Van Doren C, Thrope GB, Wijman C, editors. Common object test: a functional assessment for quadriplegic patients using an FNS hand system. Proceedings of the RESNA. New Orleans; 1989.Google Scholar
  115. 115.
    Mulcahey MJ, Smith BT, Betz RR, Triolo RJ, Peckham PH. Functional neuromuscular stimulation: outcomes in young people with tetraplegia. J Am Paraplegia Soc. 1994;17(1):20–35. Epub 1994/01/01.PubMedCrossRefGoogle Scholar
  116. 116.
    Mulcahey MJ, Smith BT, Betz RR, Weiss AA. Outcomes of tendon transfer surgery and occupational therapy in a child with tetraplegia secondary to spinal cord injury. Am J Occup Ther. 1995;49(7):607–17. Epub 1995/07/01.PubMedCrossRefGoogle Scholar
  117. 117.
    Marino RJ, Goin JE. Development of a short-form Quadriplegia Index of Function scale. Spinal Cord. 1999;37(4):289–96. Epub 1999/05/25.PubMedCrossRefGoogle Scholar
  118. 118.
    Land NE, Odding E, Duivenvoorden HJ, Bergen MP, Stam HJ. Tetraplegia Hand Activity Questionnaire (THAQ): the development, assessment of arm-hand function-related activities in tetraplegic patients with a spinal cord injury. Spinal Cord. 2004;42(5):294–301. Epub 2004/03/03.  https://doi.org/10.1038/sj.sc.3101588.PubMedCrossRefGoogle Scholar
  119. 119.
    Bryden AM, Sinnott KA, Mulcahey MJ. Innovative strategies for improving upper extremity function in persons with tetraplegia and considerations in measuring functional outcomes. Top Spinal Cord Inj Rehabil. 2005;10(4):75–93.CrossRefGoogle Scholar
  120. 120.
    Wangdell J, Bunketorp-Kall L, Koch-Borner S, Friden J. Early active rehabilitation after grip reconstructive surgery in tetraplegia. Arch Phys Med Rehabil. 2016;97(6 Suppl):S117–25. Epub 2016/05/29.  https://doi.org/10.1016/j.apmr.2015.09.025.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tuğçe Özekli Mısırlıoğlu
    • 1
  • Şafak Sahir Karamehmetoğlu
    • 1
  1. 1.Department of Physical Medicine and RehabilitationIstanbul University-Cerrahpasa, Cerrahpasa Medical FacultyIstanbulTurkey

Personalised recommendations