Advertisement

Circadian Rhythm and Stress

  • Mathias Steinach
  • Hanns-Christian GungaEmail author
Chapter

Abstract

When the Nobel Prize in Physiology/Medicine was awareded in 2017 to Jeffrey C. Hall, Michael Rosbash, and Michael W. Young, the new era of chronobiology and medicine has deserved the world’s attentions, as every living organism on Earth seems to be controlled. Rhythmicity of physiological parameters is found in virtually all living systems. The circadian rhythm with its most obvious expression, the sleep–wake cycle, is closely tied to the diurnal rhythm of day and night. A disturbance of this highly regulated system can lead to circadian misalignment resulting in sleeping difficulties with consequences on many physiological functions like psychological and physical performance, the metabolism, and the immune system as it could be found in night shift workers or in people suffering from chronic jet lag. Stress in its many forms, generally perceived as an excessive demand on human psychological and/or physiological adaptive capabilities, can have a direct influence on the human sleeping pattern due to the integration of neuronal and hormonal pathways of the stress reaction and the circadian regulation. Thus excessive and/or chronic stress can lead to a disturbance of the circadian rhythm as it can be found in diseases like depression and posttraumatic stress disorder. Extreme environments such as high altitude, hot or cold environments, or microgravity also can alter human sleep patterns as well as during isolation and confinement—experimental setups that serve to simulate the isolated nature of long-term space travel.

References

  1. American Academy of Sleep Medicine (AASM) (2005) International classification of sleep disorders. Diagnostic and coding manual, 2nd edn. American Academy of Sleep Medicine, WestchesterGoogle Scholar
  2. American Academy of Sleep Medicine (AASM) (2014) International classification of sleep disorders, 3rd edn. Amaerican Academy of Sleep Medicine, Darien, ILGoogle Scholar
  3. An R, Wang J, Ashrafi SA, Yang Y, Guan C (2018) Chronic noise exposure and adiposity: a systematic review and meta-analysis. Am J Prev Med 55(3):403–411CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andreotti F, Kluft C (1991) Circadian variation of fibrinolytic activity in blood. Chronobiol Int 8(5):336–351CrossRefPubMedPubMedCentralGoogle Scholar
  5. Aoki H, Ozeki Y, Yamada N (2001) Hypersensitivity of melatonin suppression in response to light in patients with delayed sleep phase syndrome. Chronobiol Int 18(2):263–271CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aschoff J, Wever R (1962a) Biologische rhythmen und regelung. Bad Oeyenhaus Gespräch 5:1–15Google Scholar
  7. Aschoff J, Wever R (1962b) Spontanperiodik des Menschen bei Ausschluss aller Zeitgeber. Naturwissenschaften 49:337–342CrossRefGoogle Scholar
  8. Atkinson G, Davenne D (2007) Relationships between sleep, physical activity and human health. Physiol Behav 90(2–3):229–235CrossRefPubMedPubMedCentralGoogle Scholar
  9. Atkinson G, Reilly T (1996) Circadian variation in sports performance. Sports Med 21(4):292–312CrossRefPubMedPubMedCentralGoogle Scholar
  10. Auger RR, Burgess HJ, Emens JS, Deriy LV, Thomas SM, Sharkey KM (2015) Clinical practice guideline for the treatment of intrinsic circadian rhythm sleep-wake disorders: advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase disorder (DSWPD), non-24-hour sleepwake rhythm disorder (N24SWD), and irregular sleep-wake rhythm disorder (ISWRD). An update for 2015. J Clin Sleep Med 11(10):1199–1236CrossRefPubMedPubMedCentralGoogle Scholar
  11. Aulsebrook AE, Jones TM, Mulder RA, Lesku JA (2018) Impacts of artificial light at night on sleep: a review and prospectus. J Exp Zool A Ecol Integr Physiol 329:409–418PubMedPubMedCentralGoogle Scholar
  12. Baker A, Ferguson S, Dawson D (2003) The perceived value of time – controls versus shift workers. Time Soc 12:27–39CrossRefGoogle Scholar
  13. Barger LK, Sullivan JP, Vincent AS, Fiedler ER, McKenna LM (2012) Learning to live on a Mars day: fatigue countermeasures during the Phoenix Mars Lander mission. Sleep 35(10):1423–1435PubMedPubMedCentralGoogle Scholar
  14. Barger LK, Flynn-Evans EE, Kubey A, Walsh L, Ronda JM, Wang W, Wright KP, Czeisler CA (2014) Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet 13:904–912CrossRefPubMedPubMedCentralGoogle Scholar
  15. Basner M, Dinges DF, Mollicone D, Ecker A, Jones CW (2013) Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing. Proc Natl Acad Sci U S A 110(7):2635–2640. Erratum in Proc Natl Acad Sci U S A 110(7):2676CrossRefPubMedPubMedCentralGoogle Scholar
  16. Beale AD, Whitmore D, Moran D (2016) Life in a dark biosphere: a review of circadian physiology in “arrhythmic” environments. J Comp Physiol B 186(8):947–968CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bily B, Sabol F, Török P, Artemiou P, Bilecova-Rabajdova M, Kolarcik P (2015) Influence of prophylactic melatonin administration on the incidence of early postoperative delirium in cardiac surgery patients. Anesteziol Intenzivni Med 26:319–327Google Scholar
  18. Bion V, Lowe AS, Puthucheary Z, Montgomery H (2018) Reducing sound and light exposure to improve sleep on the adult intensive care unit: an inclusive narrative review. J Intensive Care Soc 19(2):138–146CrossRefGoogle Scholar
  19. Blumert PA, Crum AJ, Ernsting M (2007) The acute effects of twenty-four hours of sleep loss on the performance of national-caliber male collegiate weightlifters. J Strength Cond Res 21(4):1146–1154PubMedPubMedCentralGoogle Scholar
  20. Boivin DB, Boudreau P (2014) Impacts of shift work on sleep and circadian rhythms. Pathol Biol (Paris) 62(5):292–301CrossRefGoogle Scholar
  21. Boulos Z, Campbell SS, Lewy AJ, Terman M, Dijk DJ, Eastman CI (1995) Light treatment for sleep disorders: consensus report. VII. Jet lag. J Biol Rhythms 10(2):167–176CrossRefGoogle Scholar
  22. Brainard GC, Barger LK, Soler RR, Hanifin JP (2016) The development of lighting countermeasures for sleep disruption and circadian misalignment during spaceflight. Curr Opin Pulm Med 22(6):535–544CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bryant PA, Trinder J, Curtis N (2004) Sick and tired: does sleep have a vital role in the immune system? Nat Rev Immunol 4:457–467CrossRefPubMedPubMedCentralGoogle Scholar
  24. Buguet A, Rivolier J, Jouvet M (1987) Human sleep patterns in Antarctica. Sleep 10:374–382CrossRefPubMedPubMedCentralGoogle Scholar
  25. Buguet A, Cespuglio R, Radomski MW (1998) Sleep and stress in man: an approach through exercise and exposure to extreme environments. Can J Physiol Pharmacol 76:553–561CrossRefPubMedPubMedCentralGoogle Scholar
  26. Buguet A, Tapie P, Bisser S, Chapotot F, Banzet S, Bogui P (2002) Sleep in tropical Africa: at the laboratory and in villages without electrical power. J Sleep Res 11(Suppl 1):30Google Scholar
  27. Burgess KR, Ainslie PN (2016) Central sleep apnea at high altitude. Adv Exp Med Biol 903:275–283CrossRefPubMedPubMedCentralGoogle Scholar
  28. Burgess KR, Cooper J, Rice A, Wong K, Kinsman T, Hahn A (2006) Effect of simulated altitude during sleep on moderate-severity OSA. Respirology 11:62–69CrossRefPubMedPubMedCentralGoogle Scholar
  29. Campbell SS (1999) Intrinsic disruption of normal sleep and circadian patterns. In: Turek FW, Zee PC (eds) Regulation of sleep and circadian rhythms. Marcel Dekker, New York, NY, pp 465–486Google Scholar
  30. Cartmell T, Luheshi GN, Hopkins SJ, Rothwell NJ, Poole S (2001) Role of endogenous interleukin-1 receptor antagonist in regulating fever induced by localised inflammation in the rat. J Physiol 531:171–180CrossRefPubMedPubMedCentralGoogle Scholar
  31. Cavadini G, Petrzilka S, Kohler P, Jud C, Tobler I, Birchler T, Fontana A (2007) TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription. Proc Natl Acad Sci U S A 104(31):12843–12848CrossRefPubMedPubMedCentralGoogle Scholar
  32. Chase JD, Roberson PA, Saunders MJ (2017) One night of sleep restriction following heavy exercise impairs 3-km cycling time-trial performance in the morning. Appl Physiol Nutr Metab 42(9):909–915CrossRefPubMedPubMedCentralGoogle Scholar
  33. Cheikh M, Hammouda O, Gaamouri N, Driss T, Chamari K, Cheikh RB, Dogui M, Souissi N (2018) Melatonin ingestion after exhaustive late-evening exercise improves sleep quality and quantity, and short-term performances in teenage athletes. Chronobiol Int 30:1–13Google Scholar
  34. Choukèr A (2012) Stress challenges and immunity in space: from mechanisms to monitoring, and preventive strategies. Springer, HeidelbergCrossRefGoogle Scholar
  35. Clark RP, Edholm OG (1985) Man and his thermal environment. E. Arnold, LondonGoogle Scholar
  36. Cohen S, Doyle WJ, Alper CM, Janicki-Deverts D, Turner RB (2009) Sleep habits and susceptibility to the common cold. Arch Intern Med 169:62–67CrossRefPubMedPubMedCentralGoogle Scholar
  37. Crandall CG, Johnson JM, Convertino VA, Raven PB, Engelke KA (1994) Altered thermoregulatory responses after 15 days of head-down tilt. J Appl Physiol 77:1863–1867CrossRefPubMedPubMedCentralGoogle Scholar
  38. Czeisler CA, Kronauer RE, Allan JS et al (1989) Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science 244(4910):1328–1333CrossRefPubMedPubMedCentralGoogle Scholar
  39. Czeisler CA, Duffy JF, Shanahan TL (1999) Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284(5423):2177–2181CrossRefPubMedPubMedCentralGoogle Scholar
  40. Delezie J, Dumont S, Dardente H, Oudart H, Grechez-Cassiau A, Klosen P, Teboul M, Delaunay F, Pevet P, Challet E (2012) The nuclear receptor REV-ERBalpha is required for the daily balance of carbohydrate and lipid metabolism. FASEB J 26:3321–3335CrossRefPubMedPubMedCentralGoogle Scholar
  41. Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 1:517–549CrossRefGoogle Scholar
  42. Dijk DJ, Brunner DP, Beersma DG, Borbe’ly AA (1990) Electroencephalogram power density and slow wave sleep as a function of prior waking and circadian phase. Sleep 13(5):430–440CrossRefPubMedPubMedCentralGoogle Scholar
  43. Dijk DJ, Neri DF, Wyatt JK, Ronda JM, Riel E, Ritz-De Cecco A, Hughes RJ, Elliott AR, Prisk GK, West JB, Czeisler CA (2001) Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am J Physiol Regul Integr Comp Physiol 281(5):R1647–R1664CrossRefPubMedPubMedCentralGoogle Scholar
  44. Dinneen S, Alzaid A, Miles J, Rizza R (1993) Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans. J Clin Invest 92:2283–2290CrossRefPubMedPubMedCentralGoogle Scholar
  45. Doan TB, Graham JD, Clarke CL (2017) Emerging functional roles of nuclear receptors in breast cancer. J Mol Endocrinol 58(3):R169–R190CrossRefPubMedPubMedCentralGoogle Scholar
  46. Drake CL, Roehrs T, Richardson G, Walsh JK, Roth T (2004) Shift work sleep disorder: prevalence and consequences beyond that of symptomatic day workers. Sleep 27(8):1453–1462. 1778–1779CrossRefPubMedPubMedCentralGoogle Scholar
  47. Duffy JF, Wright KP Jr (2005) Entrainment of the human circadian system by light. J Biol Rhythms 20:326–338CrossRefPubMedPubMedCentralGoogle Scholar
  48. Dyar KA, Eckel-Mahan KL (2017) Circadian metabolomics in time and space. Front Neurosci 11:369CrossRefPubMedPubMedCentralGoogle Scholar
  49. Eastman CI, Liu L, Fogg LF (1995) Circadian rhythm adaptation to simulated night shift work: effect of nocturnal brightlight duration. Sleep 18(6):399–407CrossRefPubMedPubMedCentralGoogle Scholar
  50. Eichenberger U, Waber U, Maggiorini M, Oelz O, Bartsch P (1993) Acute high altitude illnesses are not related to periodic breathing and apneas during sleep. In: Sutton JR, Coates J, Houston CS (eds) Hypoxia and mountain medicine. Pergamon Press, Oxford, p 302Google Scholar
  51. Eliott AL, Mills JN, Waterhouse JM (1971) A man with too long a day. J Physiol 212(2):30P–31PPubMedPubMedCentralGoogle Scholar
  52. Ely EW, Shintani A, Truman B (2004) Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 291:1753–1762CrossRefGoogle Scholar
  53. Fan J, Lv Z, Yang G, Liao Tt XJ, Wu F, Huang Q, Guo M, Hu G, Zhou M, Duan L, Liu S, Jin Y (2018) Retinoic acid receptor-related orphan receptors: critical roles in tumorigenesis. Front Immunol 9:1187CrossRefPubMedPubMedCentralGoogle Scholar
  54. Filipski E, Subramanian P, Carrière J, Guettier C, Barbason H, Lévi F (2009) Circadian disruption accelerates liver carcinogenesis in mice. Mutat Res 680(1–2):95–105CrossRefPubMedPubMedCentralGoogle Scholar
  55. Flynn-Evans EE, Barger LK, Kubey AA, Sullivan JP, Czeisler CA (2016) Circadian misalignment affects sleep and medication use before and during spaceflight. NPJ Microgravity 2:15019CrossRefPubMedPubMedCentralGoogle Scholar
  56. Folkard S, Monk TH, Lobban MC (1978) Short and long-term adjustment of circadian rhythms in ‘permanent’ night nurses. Ergonomics 21(10):785–799CrossRefPubMedPubMedCentralGoogle Scholar
  57. Fortney SM, Mikhaylov V, Lee SM, Kobzev Y, Gonzalez RR, Greenleaf JE (1998) Body temperature and thermoregulation during submaximal exercise after 115-day spaceflight. Aviat Space Environ Med 69:137–141PubMedPubMedCentralGoogle Scholar
  58. Fu L, Kettner NM (2013) The circadian clock in cancer development and therapy. Prog Mol Biol Transl Sci 119:221–282CrossRefPubMedPubMedCentralGoogle Scholar
  59. Fu L, Pelicano H, Liu J, Huang P, Lee C (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50CrossRefGoogle Scholar
  60. Gibbs M, Hampton S, Morgan L, Arendt J (2002) Adaptation of the circadian rhythm of 6-sulphatoxymelatonin to a shift schedule of seven nights followed by seven days in offshore oil installation workers. Neurosci Lett 325:91–94CrossRefPubMedPubMedCentralGoogle Scholar
  61. Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD, Boyce SH, Farrow SN, Else KJ, Singh D, Ray DW (2012) The nuclear receptor REV-ERBalpha mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci U S A 109:582–587CrossRefPubMedPubMedCentralGoogle Scholar
  62. Gierse A (1842) Quaemiam sit ratio caloris organic. Dissertation HalleGoogle Scholar
  63. Gotoh T, Vila-Caballer M, Santos CS, Liu J, Yang J, Finkielstein CV (2014) The circadian factor period 2 modulates p53 stability and transcriptional activity in unstressed cells. Mol Biol Cell 25:3081–3093CrossRefPubMedPubMedCentralGoogle Scholar
  64. Greenleaf JE (1997) Exercise thermoregulation with bed rest, confinement, and immersion deconditioning. Ann N Y Acad Sci 813:741–750CrossRefPubMedPubMedCentralGoogle Scholar
  65. Grimaldi D, Carter JR, Van Cauter E, Leproult R (2016) Adverse impact of sleep restriction and circadian misalignment on autonomic function in healthy young adults. Hypertension 68:243–250CrossRefPubMedPubMedCentralGoogle Scholar
  66. Gronfier C, Wright KP Jr, Kronauer RE, Jewett ME, Czeisler CA (2004) Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans. Am J Physiol Endocrinol Metab 287:E174–E181CrossRefPubMedPubMedCentralGoogle Scholar
  67. Gundel A, Nalishiti V, Reucher E, Vejvoda M, Zulley J (1993) Sleep and circadian rhythm during a short space mission. Clin Investig 71:718–724CrossRefPubMedPubMedCentralGoogle Scholar
  68. Gundel A, Polyakov V, Zulley J (1997) The alteration of human sleep and circadian rhythms during spaceflight. J Sleep Res 6:1–8CrossRefPubMedPubMedCentralGoogle Scholar
  69. Gundel A, Drescher J, Polyakov VV (2001) Quantity and quality of sleep during the record manned space flight of 438 days. Hum Factors Aerospace Saf 1:87–98Google Scholar
  70. Halberg F, Siffre M, Engeli M, Hillmann D, Reinberg A (1965) Etude en librecours des rythmes circadien du pouls, de l’alternance veillesommeil et de l’estimation du temps pendant les deux mois de séjour souterrain d’un homme adulte jeune. C R Acad Sci Paris 260:1259–1262PubMedPubMedCentralGoogle Scholar
  71. Harrington ME (1997) The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci Biobehav Rev 21(5):705–727CrossRefPubMedPubMedCentralGoogle Scholar
  72. Haskell EH, Palca JW, Walker JM, Berger RJ, Heller HC (1981) Metabolism and thermoregulation during stages of sleep in humans exposed to heat and cold. J Appl Physiol Respir Environ Exerc Physiol 51:948–954PubMedPubMedCentralGoogle Scholar
  73. Hayashi M, Shimba S, Tezuka M (2007) Characterization of the molecular clock in mouse peritoneal macrophages. Biol Pharm Bull 30:621–626CrossRefPubMedPubMedCentralGoogle Scholar
  74. He Y, Jones CR, Fujiki N, Xu Y, Guo B, Holder JL, Rossner MJ, Nishino S, Fu YH (2009) The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325:866–870CrossRefPubMedPubMedCentralGoogle Scholar
  75. Heslegrave RJ, Angus RG, Buguet A (1982) Changes in sleep patterns as a function of hyperbaric exposure and confinement: a preliminary report. Meeting of the Society for Psychophysiological Research, Minneapolis, MNGoogle Scholar
  76. Hida A, Kitamura S, Katayose Y, Kato M, Ono H, Kadotani H, Uchiyama M, Ebisawa T, Inoue Y, Kamei Y, Okawa M, Takahashi K, Mishima K (2014) Screening of clock gene polymorphisms demonstrates association of a PER3 polymorphism with morningness-eveningness preference and circadian rhythm sleep disorder. Sci Rep 4:6309.  https://doi.org/10.1038/srep06309CrossRefPubMedPubMedCentralGoogle Scholar
  77. Hittle BM, Gillespie GL (2018) Identifying shift worker chronotype: implications for health. Ind Health 56(6):512–523CrossRefPubMedPubMedCentralGoogle Scholar
  78. Huber AL, Papp SJ, Chan AB, Henriksson E, Jordan SD, Kriebs A, Nguyen M, Wallace M, Li Z, Metallo CM (2016) CRY2 and FBXL3 cooperatively degrade c-MYC. Mol Cell 64:774–789CrossRefPubMedPubMedCentralGoogle Scholar
  79. Hurst M (2008) Qui dort la nuit de nos jour? Les habitudes de sommeil des canadiens. Stat Can 11–008:42–48Google Scholar
  80. ICSD-2 (2005) The international classification of sleep disorders: diagnostic and coding manual, 2nd edn. American Academy of Sleep Medicine, WestchesterGoogle Scholar
  81. James FO, Cermakian N, Boivin DB (2007) Circadian rhythms of melatonin, cortisol, and clock gene expression during simulated night shift work. Sleep 30:1427–1436CrossRefPubMedPubMedCentralGoogle Scholar
  82. Jiang W, Zhao S, Jiang X, Zhang E, Hu G, Hu B, Zheng P, Xiao J, Lu Z, Lu Y (2016) The circadian clock gene bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Lett 371:314–325CrossRefPubMedPubMedCentralGoogle Scholar
  83. Jones CR, Campbell SS, Zone SE et al (1999) Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat Med 5(9):1062–1065CrossRefPubMedPubMedCentralGoogle Scholar
  84. Joshi SS, Lesser TJ, Olsen JW, O’Hara BF (2016) The importance of temperature and thermoregulation for optimal human sleep. Energ Buildings 131:153–157CrossRefGoogle Scholar
  85. Juliff LE, Halson SL, Peiffer JJ (2015) Understanding sleep disturbance in athletes prior to important competitions. J Sci Med Sport 18(1):13–18CrossRefPubMedPubMedCentralGoogle Scholar
  86. Kamei Y, Hayakawa T, Urata J et al (2000) Melatonin treatment for circadian rhythm sleep disorders. Psychiatry Clin Neurosci 54(3):381–382CrossRefPubMedPubMedCentralGoogle Scholar
  87. Kanas N, Manzey D (2010) Space psychology and psychiatry, 2nd edn. Springer, New York, NY, p 96fGoogle Scholar
  88. Karlsson B, Knutsson A, Lindahl B (2001) Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup Environ Med 58:747–752CrossRefPubMedPubMedCentralGoogle Scholar
  89. Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD, Kramer A, Maier B (2009) A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A 106:21407–21412CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kendel K, Schmidt-Kessen W (1973) The influence of room temperature on night sleep in man (polygraphic night-sleep recordings in the climatic chamber). In: Kendel K, Schmidt-Kessen W (eds) Sleep. S. Karger, Basel, pp 423–425Google Scholar
  91. Kim KH, Kabir E, Ara Jahan S (2014) A review of the consequences of global climate change on human health. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 32(3):299–318CrossRefPubMedPubMedCentralGoogle Scholar
  92. Knauth PR (1981) Duration of sleep related to the type of shiftwork. In: Reinberg AV, Andlauer N (eds) Advances in the biosciences: night and shiftwork biological and social aspects. Pergamon Press, Oxford, pp 161–168Google Scholar
  93. Knowles OE, Drinkwater EJ, Urwin CS, Lamon S, Aisbett B (2018) Inadequate sleep and muscle strength: Implications for resistance training. J Sci Med Sport 21(9):959–968CrossRefPubMedPubMedCentralGoogle Scholar
  94. Koscheyev VS, Leon GR, Hubel A, Nelson ED, Tranchida D (2000) Thermoregulation and heat exchange in a nonuniform thermal environment during simulated extended EVA. Extravehicular activities. Aviat Space Environ Med 71:579–585PubMedPubMedCentralGoogle Scholar
  95. Kraft NO, Inoue N, Mizuno K, Ohshima H, Murai T, Sekiguchi C (2002) Physiological changes, sleep, and morning mood in an isolated environment. Aviat Space Environ Med 73(11):1089–1093PubMedPubMedCentralGoogle Scholar
  96. Krauchi K, Cajochen C, Werth E, Wirz-Justice A (2000) Functional link between distal vasodilation and sleep-onset latency? Am J Physiol Regul Integr Comp Physiol 278:741–748CrossRefGoogle Scholar
  97. Krause AJ, Simon EB, Mander BA (2017) The sleep-deprived human brain. Nat Rev Neurosci 18:404–418CrossRefPubMedPubMedCentralGoogle Scholar
  98. Kurien PA, Chong SY, Ptáček LJ, Fu YH (2013) Sick and tired: how molecular regulators of human sleep schedules and duration impact immune function. Curr Opin Neurobiol 23(5):873–879CrossRefPubMedPubMedCentralGoogle Scholar
  99. Labrecque N, Cermakian N (2015) Circadian clocks in the immune system. J Biol Rhythms 30(4):277–290CrossRefPubMedPubMedCentralGoogle Scholar
  100. Labyak S, Lava S, Turek F, Zee P (2002) Effects of shiftwork on sleep and menstrual function in nurses. Health Care Women Int 23:703–714CrossRefPubMedPubMedCentralGoogle Scholar
  101. Lack LS (1993) Evening light treatment of early morning insomnia. Sleep Res 22:225Google Scholar
  102. Lan L, Pan L, Lian Z, Huang H, Lin Y (2014) Experimental study on thermal comfort of sleeping people at different air temperatures. Build Environ 73:24–31CrossRefGoogle Scholar
  103. Lan L, Tsuzuki L, Liu YF, Lian ZW (2017) Thermal environment and sleep quality: a review. Energy Build 149(15):101–113CrossRefGoogle Scholar
  104. Lan L, Qian XL, Lian ZW, Lin YB (2018) Local body cooling to improve sleep quality and thermal comfort in a hot environment. Indoor Air 28(1):135–145CrossRefGoogle Scholar
  105. Ledrans M, Pirard P, Tillaut H, Vandentorren S, Suzan F, Salines G et al (2004) La canicule d’août 2003: que s’est-il passé ? Rev Prat 54:1289–1297PubMedPubMedCentralGoogle Scholar
  106. Leproult R, Holmback U, Van Cauter E (2014) Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes 63:1860–1869CrossRefPubMedPubMedCentralGoogle Scholar
  107. Levi F, Altinok A, Clairambault J, Goldbeter A (2008) Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Philos Transact A Math Phys Eng Sci 366:3575–3598CrossRefGoogle Scholar
  108. Lewis SR, Pritchard MW, Schofield-Robinson OJ, Alderson P, Smith AF (2018) Melatonin for the promotion of sleep in adults in the intensive care unit. Cochrane Database Syst Rev 5:CD012455PubMedPubMedCentralGoogle Scholar
  109. Lewy AJ, Sack RL, Miller LS, Hoban TM (1987) Antidepressant and circadian phase-shifting effects of light. Science 235:352–354CrossRefPubMedPubMedCentralGoogle Scholar
  110. Litinski M, Scheer FA, Shea SA (2009) Influence of the circadian system on disease severity. Sleep Med Clin 4:143–163CrossRefPubMedPubMedCentralGoogle Scholar
  111. Liu C, Weaver DR, Jin X et al (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19(1):91–102CrossRefGoogle Scholar
  112. Liu Y, Wheaton AG, Chapman DP (2016) Prevalence of healthy sleep duration among adults—United States, 2014. MMWR Morb Mortal Wkly Rep 65:137–141CrossRefPubMedPubMedCentralGoogle Scholar
  113. Logan RW, Zhang C, Murugan S, O’Connell S, Levitt D, Rosenwasser AM, Sarkar DK (2012) Chronic shiftlag alters the circadian clock of NK cells and promotes lung cancer growth in rats. J Immunol 188:2583–2591CrossRefPubMedPubMedCentralGoogle Scholar
  114. Luke A, Lazaro RM, Bergeron MF (2011) Sports-related injuries in youth athletes: is overscheduling a risk factor? Clin J Sport Med 21(4):307–314CrossRefGoogle Scholar
  115. Lund J, Arendt J, Hampton S et al (2001) Postprandial hormone and metabolic responses amongst shift workers in Antarctica. J Endocrinol 171:557–564CrossRefGoogle Scholar
  116. Magni M, Buscemi G, Zannini L (2018) Cell cycle and apoptosis regulator 2 at the interface between DNA damage response and cell physiology. Mutat Res 776:1–9CrossRefGoogle Scholar
  117. Mallis MM, DeRoshia CW (2005) Circadian rhythms, sleep, and performance in space. Aviat Space Environ Med 76(6 Suppl):B94–B107Google Scholar
  118. Marquet P et al (2003) Sleep-related consolidation of visiomotoric skill: brain mechanism as assessed by functional magnetic resonance imaging. J Neurosci 23:1432–1440CrossRefGoogle Scholar
  119. Mason IC, Boubekri M, Figueiro MG, Hasler BP, Hattar S, Hill SM, Nelson RJ, Sharkey KM, Wright KP, Boyd WA, Brown MK, Laposky AD, Twery MJ, Zee PC (2018) Circadian health and light: a report on the National Heart, Lung, and Blood Institute’s workshop. J Biol Rhythms 1:748730418789506Google Scholar
  120. Matsuoka S, Inoue K, Okuda S, Ishikawa T, Lee HD, Mouri M (1986) EEG polygraphic sleep study in divers under a 31 ATA He–O2 environment with special reference to the automated analysis of sleep stages. J UOEH 8:293–305CrossRefGoogle Scholar
  121. McKenna H, van der Horst GTJ, Reiss I, Martin D (2018) Clinical chronobiology: a timely consideration in critical care medicine. Crit Care 22(1):124CrossRefPubMedPubMedCentralGoogle Scholar
  122. McMahon WR, Ftouni S, Drummond SPA, Maruff P, Lockley SW, Rajaratnam SMW, Anderson C (2018) The wake maintenance zone shows task dependent changes in cognitive function following one night without sleep. Sleep 41(10).  https://doi.org/10.1093/sleep/zsy148
  123. Mistlberger R, Rusak B (1989) Mechanisms and models of the circadian timekeeping system. In: Kryger M, Roth T, Dement W (eds) Principles and practice of sleep medicine. WB Saunders Company, Philadelphia, PA, pp 141–152Google Scholar
  124. Mizuno K, Asano K, Inoue Y, Shirakawa S (2005) Consecutive monitoring of sleep disturbance for four nights at the top of Mt Fuji (3776 m). Psychiatry Clin Neurosci 59:223–225CrossRefGoogle Scholar
  125. Moline ML, Pollak CP, Monk TH et al (1992) Age-related differences in recovery from simulated jet lag. Sleep 15:28–40CrossRefPubMedPubMedCentralGoogle Scholar
  126. Mollicone DJ et al (2007) Optimizing sleep/wake schedules in space: sleep during chronic nocturnal sleep restriction with and without diurnal naps. Acta Astronaut 60:354–361CrossRefGoogle Scholar
  127. Montmayeur A, Buguet A (1992) Sleep patterns of European expatriates in a dry tropical climate. J Sleep Res 1:191–196CrossRefPubMedPubMedCentralGoogle Scholar
  128. Moore-Ede MCS, Sulzman FM, Fuller C (1982) The clocks that time us. Harvard University Press, CambridgeGoogle Scholar
  129. Morgenthaler TI, Lee-Chiong T, Alessi C, Standards of Practice Committee of the American Academy of Sleep Medicine et al. (2007) Practice parameters for the clinical evaluation and treatment of circadian rhythm sleep disorders. An American Academy of Sleep Medicine report. Sleep 30(11):1445–1459CrossRefPubMedPubMedCentralGoogle Scholar
  130. Morris CJ, Purvis TE, Hu K, Scheer FA (2016) Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci U S A 113:E1402–E1411CrossRefPubMedPubMedCentralGoogle Scholar
  131. Morrison SA, Mirnik D, Korsic S, Eiken O, Mekjavic IB, Dolenc-Groselj L (2017) Bed rest and hypoxic exposure affect sleep architecture and breathing stability. Front Physiol 8:410CrossRefPubMedPubMedCentralGoogle Scholar
  132. Munafo D, Loewy D, Reuben K, Kavy G, Hevener B (2018) Sleep deprivation and the workplace: prevalence, impact, and solutions. Am J Health Promot 32(7):1644–1646CrossRefPubMedPubMedCentralGoogle Scholar
  133. Mundigler G, Delle-Karth G, Koreny M (2002) Impaired circadian rhythm of melatonin secretion in sedated critically ill patients with severe sepsis. Crit Care Med 30:536–540CrossRefPubMedPubMedCentralGoogle Scholar
  134. Murphy BA, Vick MM, Sessions DR, Cook RF, Fitzgerald BP (2007) Acute systemic inflammation transiently synchronizes clock gene expression in equine peripheral blood. Brain Behav Immun 21(4):467–476CrossRefPubMedPubMedCentralGoogle Scholar
  135. Natvik S, Bjorvatn B, Moen BE, Mageroy N, Sivertsen B, Pallesen S (2011) Personality factors related to shift work tolerance in two- and three-shift workers. Appl Ergon 42(5):719–724CrossRefPubMedPubMedCentralGoogle Scholar
  136. Nesbitt AD, Dijk DJ (2014) Out of synch with society: an update on delayed sleep phase disorder. Curr Opin Pulm Med 20(6):581–587CrossRefPubMedPubMedCentralGoogle Scholar
  137. Nicholson AN, Smith PA, Stone BM, Bradwell AR, Coote JH (1988) Altitude insomnia: studies during an expedition to the Himalayas. Sleep 11:354–361CrossRefPubMedPubMedCentralGoogle Scholar
  138. Nilsson EK, Bostrom AE, Mwinyi J (2016) Epigenomics of total acute sleep deprivation in relation to genome-wide DNA methylation profiles and RNA expression. Omics 20:334–342CrossRefPubMedPubMedCentralGoogle Scholar
  139. Nobel Assembly at Karolinska Institutet (2017) Nobel Price for physiology or medicine. Nobelförsamlingen, StockholmGoogle Scholar
  140. Okyar A, Lévi F (2008) Circadian control of cell cycle pathways: relevance for cancer chronotherapeutics. In: Yoshida K (ed) Trends in cell cycle research. Research Signpost, Thiruvananthapuram, pp 293–317Google Scholar
  141. Ortiz-Naretto AE, Pereiro MP, Ernst G, Borsini EE (2018) Sleep respiratory disturbances during the ascent to Mount Aconcagua. Sleep Sci 11(1):20–24CrossRefPubMedPubMedCentralGoogle Scholar
  142. Oster H, Challet E, Ott V, Arvat E, de Kloet ER, Dijk DJ, Lightman S, Vgontzas A, Van Cauter E (2017) The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr Rev 38(1):3–45PubMedGoogle Scholar
  143. Ozaki S, Uchiyama M, Shirakawa S, Okawa M (1996) Prolonged interval from body temperature nadir to sleep offset in patients with delayed sleep phase syndrome. Sleep 19(1):36–40PubMedGoogle Scholar
  144. Paine S, Fink J, Gander P, Warman GR (2014) Identifying advanced and delayed sleep phase disorders in the general population: a national survey of New Zealand adults. Chronobiol Int 31:627–636CrossRefGoogle Scholar
  145. Palca JW, Walker JM, Berger RJ (1986) Thermoregulation, metabolism, and stages of sleep in cold-exposed men. J Appl Physiol 61:940–947CrossRefGoogle Scholar
  146. Pickett GF, Morris AF (1975) Effects of acute sleep and food deprivation on total body response time and cardiovascular performance. J Sports Med Phys Fitness 15:49–56PubMedGoogle Scholar
  147. Pilcher JJ, Coplen MK (2000) Work/rest cycles in railroad operations: effects of shorter than 24-h shift work schedules and on-call schedules on sleep. Ergonomics 43:573–588CrossRefGoogle Scholar
  148. Pilorz V, Helfrich-Förster C, Oster H (2018) The role of the circadian clock system in physiology. Pflugers Arch 470(2):227–239CrossRefGoogle Scholar
  149. Plywaczewski R, Wu TY, Wang XQ, Cheng HW, Sliwinski P, Zielinski J (2003) Sleep structure and periodic breathing in Tibetans and Han at simulated altitude of 5000 m. Respir Physiol Neurobiol 136:187–197CrossRefGoogle Scholar
  150. Pollard LC, Choy EH, Gonzalez J, Khoshaba B, Scott DL (2006) Fatigue in rheumatoid arthritis reflects pain, not disease activity. Rheumatology (Oxford) 45:885–889CrossRefGoogle Scholar
  151. Polyakov V, Lacota NG, Gundel A (2001) Human thermohomeostasis onboard “Mir” and in simulated microgravity studies. Acta Astronaut 49:137–143CrossRefGoogle Scholar
  152. Portela LF, Rotenberg L, Waissmann W (2004) Self-reported health and sleep complaints among nursing personnel working under 12 h night and day shifts. Chronobiol Int 21:859–870CrossRefPubMedPubMedCentralGoogle Scholar
  153. Presser HB (1999) Towards a 24-hour economy. Science 284:1778–1779CrossRefGoogle Scholar
  154. Prince TM, Abel T (2013) The impact of sleep loss on hippocampal function. Learn Mem 20:558–569CrossRefPubMedPubMedCentralGoogle Scholar
  155. Pritchett D, Reddy AB (2017) No FAD, no CRY: redox and circadian rhythms. Trends Biochem Sci 42(7):497–499CrossRefGoogle Scholar
  156. Radomski MW, Boutelier C (1982) Hormone response of normal and intermittent cold-preadapted humans to continuous cold. J Appl Physiol 53:610–616CrossRefPubMedPubMedCentralGoogle Scholar
  157. Rechtschaffen A, Bergmann BM, Everson CA, Kushida CA, Gilliland MA (2002) Sleep deprivation in the rat: X. Integration and discussion of the findings. Sleep 25(1):68–87CrossRefGoogle Scholar
  158. Regestein QR, Monk TH (1995) Delayed sleep phase syndrome: a review of its clinical aspects. Am J Psychiatry 152(4):602–608CrossRefPubMedPubMedCentralGoogle Scholar
  159. Reid K, Zee PC (2009) Circadian rhythm disorders. Semin Neurol 29:393–405CrossRefPubMedPubMedCentralGoogle Scholar
  160. Reitz G, Berger T, Bilski P, Facius R, Hajek M, Petrov V, Puchalska M, Zhou D, Bossler J, Akatov Y, Shurshakov V, Olko P, Ptaszkiewicz M, Bergmann R, Fugger M, Vana N, Beaujean R, Burmeister S, Bartlett D, Hager L, Pálfalvi J, Szabó J, O'Sullivan D, Kitamura H, Uchihori Y, Yasuda N, Nagamatsu A, Tawara H, Benton E, Gaza R, McKeever S, Sawakuchi G, Yukihara E, Cucinotta F, Semones E, Zapp N, Miller J, Dettmann J (2009) Astronaut’s organ doses inferred from measurements in a human phantom outside the International Space Station. Radiat Res 171:225–235CrossRefPubMedPubMedCentralGoogle Scholar
  161. Reyner LA, Horne JA (2013) Sleep restriction and serving accuracy in performance tennis players, and effects of caffeine. Physiol Behav 120:93–96CrossRefGoogle Scholar
  162. Roach GD, Lamond N, Dorrian J, Burgess H, Holmes A, Fletcher A (2005) Changes in the concentration of urinary 6-sulphatoxymelatonin during a week of simulated night work. Ind Health 43:193–196CrossRefPubMedPubMedCentralGoogle Scholar
  163. Rosenthal NE, Joseph-Vanderpool JR, Levendosky AA et al (1990) Phase-shifting effects of bright morning light as treatment for delayed sleep phase syndrome. Sleep 13(4):354–361PubMedGoogle Scholar
  164. Rostain JC, Gardette-Chauffour MC, Naquet R (1997) EEG and sleep disturbances during dives at 450 msw in helium–nitrogen–oxygen mixture. J Appl Physiol 83:575–582CrossRefPubMedPubMedCentralGoogle Scholar
  165. Ruby NF, Brennan TJ, Xie X et al (2002) Role of melanopsin in circadian responses to light. Science 298(5601):2211–2213CrossRefPubMedPubMedCentralGoogle Scholar
  166. Rundfeldt LC, Maggioni MA, Coker RH, Gunga H-C, Riveros-Rivera A, Schalt A, Steinach M (2018) Cardiac autonomic modulations and psychological correlates in the Yukon Arctic ultra: the longest and the coldest ultramarathon. Front Physiol 9:35CrossRefPubMedPubMedCentralGoogle Scholar
  167. Sack RL, Brandes RW, Kendall AR, Lewy AJ (2000) Entrainment of free-running circadian rhythms by melatonin in blind people. N Engl J Med 343(15):1070–1077CrossRefPubMedPubMedCentralGoogle Scholar
  168. Sack RL, Auckley D, Auger RR, Carskadon MA, Wright KP Jr, Vitiello MV, Zhdanova IV, American Academy of Sleep Medicine (2007) Circadian rhythm sleep disorders: part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. An American Academy of Sleep Medicine review. Sleep 30(11):1484–1501CrossRefPubMedPubMedCentralGoogle Scholar
  169. Salva MAQ, Hartley S, Léger D, Dauvilliers YA (2017) Non-24-hour sleep-wake rhythm disorder in the totally blind: diagnosis and management. Front Neurol 8:686CrossRefGoogle Scholar
  170. Santy PA, Kapanka H, Davis JR, Stewart DF (1988) Analysis of sleep on shuttle missions. Aviat Space Environ Med 59(11 Pt 1):1094–1097PubMedPubMedCentralGoogle Scholar
  171. Sawka MN, Gonzalez RR, Pandolf KB (1984) Effects of sleep deprivation on thermoregulation during exercise. Am J Physiol 246:R72–R77PubMedPubMedCentralGoogle Scholar
  172. Saxvig IW, Wilhelmsen-Langeland A, Pallesen S, Vedaa O, Nordhus IH, Bjorvatn B (2014) A randomized controlled trial with bright light and melatonin for delayed sleep phase disorder: effects on subjective and objective sleep. Chronobiol Int 31(1):72–86CrossRefPubMedPubMedCentralGoogle Scholar
  173. Scheer FA, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106(11):4453–4458CrossRefPubMedPubMedCentralGoogle Scholar
  174. Scheiermann C, Gibbs J, Ince L, Loudon A (2018) Clocking in to immunity. Nat Rev Immunol 18(7):423–437CrossRefGoogle Scholar
  175. Schrader H, Bovim G, Sand T (1993) The prevalence of delayed and advanced sleep phase syndromes. J Sleep Res 2(1):51–55CrossRefPubMedPubMedCentralGoogle Scholar
  176. Schweitzer PK, Randazzo AC, Stone K, Erman M, Walsh JK (2006) Laboratory and field studies of naps and caffeine as practical countermeasures for sleep-wake problems associated with night work. Sleep 29:39–50CrossRefPubMedPubMedCentralGoogle Scholar
  177. Segawa K, Nakazawa S, Tsukamoto Y et al (1987) Peptic ulcer is prevalent among shift workers. Dig Dis Sci 32:449–453CrossRefPubMedPubMedCentralGoogle Scholar
  178. Sewitch DE, Kittrell EMV, Kupfer DJ, Reynolds CF (1986) Body temperature and sleep architecture in response to mild cold stress in women. Physiol Behav 36:951–957CrossRefPubMedPubMedCentralGoogle Scholar
  179. Sharkey KM, Fogg LF, Eastman CI (2001) Effects of melatonin administration on daytime sleep after simulated night shift work. J Sleep Res 10(3):181–192CrossRefPubMedPubMedCentralGoogle Scholar
  180. Shostak A (2017) Circadian clock, cell division, and cancer: from molecules to organism. Int J Mol Sci 18(4):pii:E873CrossRefGoogle Scholar
  181. Silva RH, Abílio VC, Takatsu AL, Kameda SR, Grassl C, Chehin AB, Medrano WA, Calzavara MB, Registro S, Andersen ML, Machado RB, Carvalho RC, Ribeiro Rde A, Tufik S, Frussa-Filho R (2004) Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology 46(6):895–903CrossRefPubMedPubMedCentralGoogle Scholar
  182. Simmons E, McGrane O, Wedmore I (2015) Jet lag modification. Curr Sports Med Rep 14(2):123–128CrossRefPubMedPubMedCentralGoogle Scholar
  183. Skein M, Duffield R, Edge J (2011) Intermittent-sprint performance and muscle glycogen after 30 h of sleep deprivation. Med Sci Sports Exerc 43:1301Y11CrossRefGoogle Scholar
  184. Skein M, Duffield R, Minett G (2013) The effect of overnight sleep deprivation after competitive rugby league matches on postmatch physiological and perceptual recovery. Int J Sports Physiol Perform 8:556–564CrossRefPubMedPubMedCentralGoogle Scholar
  185. Skornyakov E, Gaddameedhi S, Paech GM, Sparrow AR, Satterfield BC, Shattuck NL, Layton ME, Karatsoreos I, VAN Dongen HPA (2018) Cardiac autonomic activity during simulated shift work. Ind Health 57(1):118–132CrossRefPubMedPubMedCentralGoogle Scholar
  186. Smith MR, Eastman CI (2008) Night shift performance is improved by a compromise circadian phase position: study 3. Circadian phase after 7 night shifts with an intervening weekend off. Sleep 31(12):1639–1645CrossRefPubMedPubMedCentralGoogle Scholar
  187. Smith MR, Cullnan EE, Eastman CI (2008) Shaping the light/dark pattern for circadian adaptation to night shift work. Physiol Behav 95:449–456CrossRefPubMedPubMedCentralGoogle Scholar
  188. Son GH, Cha HK, Chung S, Kim K (2018) Multimodal regulation of circadian glucocorticoid rhythm by central and adrenal clocks. J Endocrinol Soc 2(5):444–459CrossRefGoogle Scholar
  189. Spanagel R, Rosenwasser AM, Schumann G, Sarkar DK (2005) Alcohol consumption and the body’s biological clock. Alcohol Clin Exp Res 29:1550–1557CrossRefPubMedPubMedCentralGoogle Scholar
  190. Spiegel K, Sheridan JF, Van CE (2002) Effect of sleep deprivation on response to immunization. JAMA 288:1471–1472CrossRefPubMedPubMedCentralGoogle Scholar
  191. Stahn A, Werner A, Opatz O, Maggioni M, Steinach M, Weller von Ahlefeld V, Moore A, Crucian B, Smith S, Zwart S, Schlabs T, Mendt S, Trippel T, Koralewski E, Koch J, Choukèr A, Reitz G, Shang P, Röcker L, Kirsch K, Gunga HC (2017) Increased core body temperature in astronauts during long-duration space missions. Sci Rep 7(1):16180CrossRefPubMedPubMedCentralGoogle Scholar
  192. Steinach M, Kohlberg E, Maggioni MA, Mendt S, Opatz O, Stahn A, Gunga HC (2016) Sleep quality changes during overwintering at the German Antarctic Stations Neumayer II and III: the gender factor. PLoS One 11(2):e0150099CrossRefPubMedPubMedCentralGoogle Scholar
  193. Swanson LM, Arnedt JT, Rosekind MR, Belenky G, Balkin TJ, Drake C (2011) Sleep disorders and work performance: findings from the 2008 National Sleep Foundation Sleep in America poll. J Sleep Res 20:487–494CrossRefPubMedPubMedCentralGoogle Scholar
  194. Takahashi T, Sasaki M, Itoh H et al (2002) Melatonin alleviates jet lag symptoms caused by an 11-hour eastward flight. Psychiatry Clin Neurosci 56:301–302CrossRefPubMedPubMedCentralGoogle Scholar
  195. Thosar SS, Butler MP, Shea SA (2018) Role of the circadian system in cardiovascular disease. J Clin Invest 128(6):2157–2167CrossRefPubMedPubMedCentralGoogle Scholar
  196. Tobler I, Borbély AA (1993) European isolation and confinement study. Twenty-four hour rhythm of rest/activity and sleep/wakefulness: comparison of subjective and objective measures. Adv Space Biol Med 3:163–183CrossRefPubMedPubMedCentralGoogle Scholar
  197. Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81:12–34CrossRefPubMedPubMedCentralGoogle Scholar
  198. Tortorolo F, Farren F, Rada G (2015) Is melatonin useful for jet lag? Medwave 15(Suppl 3):e6343CrossRefPubMedPubMedCentralGoogle Scholar
  199. Toth LA, Tolley EA, Krueger JM (1993) Sleep as a prognostic indicator during infectious disease in rabbits. Proc Soc Exp Biol Med 203:179–192CrossRefPubMedPubMedCentralGoogle Scholar
  200. Tresguerres JA, Ariznavarreta C, Granados B, Martin M, Villanua MA, Golombek DA, Cardinali DP (2001) Circadian urinary 6-sulphatoxymelatonin, cortisol excretion and locomotor activity in airline pilots during transmeridian flights. J Pineal Res 31:16–22CrossRefPubMedPubMedCentralGoogle Scholar
  201. Tseng CH, Lin FC, Chao HS, Tsai HC, Shiao GM, Chang SC (2015) Impact of rapid ascent to high altitude on sleep. Sleep Breath 19(3):819–826CrossRefPubMedPubMedCentralGoogle Scholar
  202. Van Diest R, Hamulyák K, Kop WJ, van Zandvoort C, Appels A (2002) Diurnal variations in coagulation and fibrinolysis in vital exhaustion. Psychosom Med 64(5):787–792PubMedPubMedCentralGoogle Scholar
  203. Van Dongen HP (2004) Comparison of mathematical model predictions to experimental data of fatigue and performance. Aviat Space Environ Med 75(3 Suppl):A15–A36. 302PubMedPubMedCentralGoogle Scholar
  204. Van Dongen HP, Maislin G, Mullington JM, Dinges DF (2003) The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26(2):117–126CrossRefGoogle Scholar
  205. Viswanathan AN, Schernhammer ES (2008) Circulating melatonin and the risk of breast and endometrial cancer in women. Cancer Lett 281:1–7CrossRefPubMedPubMedCentralGoogle Scholar
  206. Wang F, Zhang L, Zhang Y, Zhang B, He Y, Xie S, Li M, Miao X, Chan EY, Tang JL, Wong MC, Li Z, Yu IT, Tse LA (2014) Meta-analysis on night shift work and risk of metabolic syndrome. Obes Rev 15(9):709–720CrossRefPubMedPubMedCentralGoogle Scholar
  207. Warman VL, Dijk DJ, Warman GR, Arendt J, Skene DJ (2003) Phase advancing human circadian rhythms with short wavelength light. Neurosci Lett 342(1–2):37–40CrossRefPubMedPubMedCentralGoogle Scholar
  208. Waterhouse J, Reilly T, Atkinson G (1997) Jet-lag. Lancet 350(9091):1611–1616CrossRefPubMedPubMedCentralGoogle Scholar
  209. Waterhouse J, Buckley P, Edwards B, Reilly T (2003) Measurement of, and some reasons for, differences in eating habits between night and dayworkers. Chronobiol Int 20:1075–1092CrossRefPubMedPubMedCentralGoogle Scholar
  210. Waterhouse J, Reilly T, Atkinson G, Edwards B (2007) Jet lag: trends and coping strategies. Lancet 369(9567):1117–1129CrossRefPubMedPubMedCentralGoogle Scholar
  211. Watson AM (2017) Sleep and athletic performance. Curr Sports Med Rep 16(6):413–418CrossRefPubMedPubMedCentralGoogle Scholar
  212. Weber AL, Cary MS, Connor N, Keyes P (1980) Human non-24-hour sleep-wake cycles in an everyday environment. Sleep 2(3):347–354CrossRefPubMedPubMedCentralGoogle Scholar
  213. Weikum ER, Liu X, Ortlund EA (2018) The nuclear receptor superfamily: a structural perspective. Protein Sci 27(11):1876–1892CrossRefPubMedPubMedCentralGoogle Scholar
  214. Wende AR, Young ME, Chatham J, Zhang J, Rajasekaran NS, Darley-Usmar VM (2016) Redox biology and the interface between bioenergetics, autophagy and circadian control of metabolism. Free Radic Biol Med 100:94–107CrossRefPubMedPubMedCentralGoogle Scholar
  215. Whitmire A, Slack K, Locke J, Keeton K (2013) Sleep quality questionnaire shortduration flyers. NASA/TM-2013-217378. Johnson Space Center, Houston, TXGoogle Scholar
  216. Winter WC, Potenziano BJ, Zhang Z (2011) Chronotype as a predictor of performance in major league baseball batters. Sleep 34:A167–A168Google Scholar
  217. Wittenbrink N, Ananthasubramaniam B, Münch M, Koller B, Maier B, Weschke C, Bes F, de Zeeuw J, Nowozin C, Wahnschaffe A, Wisniewski S, Zaleska M, Bartok O, Ashwal-Fluss R, Lammert H, Herzel H, Hummel M, Kadener S, Kunz D, Kramer A (2018) High-accuracy determination of internal circadian time from a single blood sample. J Clin Invest 128(9):3826–3839CrossRefPubMedPubMedCentralGoogle Scholar
  218. Wotring VE (2015) Medication use by U.S. crewmembers on the International Space Station. FASEB J 29:4417–4423CrossRefPubMedPubMedCentralGoogle Scholar
  219. Wu B, Wang Y, Wu X, Liu D, Xu D, Wang F (2018) On-orbit sleep problems of astronauts and countermeasures. Mil Med Res 5(1):17CrossRefPubMedPubMedCentralGoogle Scholar
  220. Wulff K, Dijk D-J, Middleton B, Foster RG, Joyce EM (2012) Sleep and circadian rhythm disruption in schizophrenia. Br J Psychiatry 200:308–316CrossRefPubMedPubMedCentralGoogle Scholar
  221. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M (2013) Sleep drives metabolite clearance from adult brain. Science 342(6156):373–377CrossRefPubMedPubMedCentralGoogle Scholar
  222. Youngstedt SD (2005) Effects of exercise on sleep. Clin Sports Med 24:355–365CrossRefPubMedPubMedCentralGoogle Scholar
  223. Zhou X, Ferguson SA, Matthews RW, Sargent C, Darwent D, Kennaway DJ (2012) Mismatch between subjective alertness and objective performance under sleep restriction is greatest during the biological night. J Sleep Res 21:40–49CrossRefPubMedPubMedCentralGoogle Scholar
  224. Zhu JL, Hjollund NH, Andersen AM, Olsen J (2004) Shift work, job stress, and late fetal loss: the national birth cohort in Denmark. J Occup Environ Med 46:1144–1149CrossRefPubMedPubMedCentralGoogle Scholar
  225. Zulley J, Wever R, Aschoff J (1981) The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflugers Arch 391(4):314–318CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.ZWMBBerlinGermany

Personalised recommendations