What Is Stress?

  • Bruce S. McEwen
  • Ilia N. KaratsoreosEmail author


Stress is a word that is used throughout the world and it has many meanings. Physiologically, cortisol and adrenalin are stress hormones, and the “fight or flight” response is usually the focus of discussions of stress. But that is only part of the story. There are multiple biological mediators besides the adrenal stress hormones that are responsible for adaptation in situations that evoke the “fight or flight” response and help us stay alive, not only in our daily lives and in extreme conditions on Earth but also in Space. While these systems are critical to protect life and promote adaptation to environmental or psychological challenges, these same mediators also contribute to pathophysiology when overused and dysregulated, resulting in allostatic load and overload. This “wear and tear” on physiological systems, from the brain to the rest of the body, can accumulate, leading to significant mental and physical health problems. The goal of this chapter is to explore these systems and provide a framework for the constructive discussion and study of the complex brain-body response we term “stress.”


  1. Adams KL, Castanon-Cervantes O, Evans JA, Davidson AJ (2013) Environmental circadian disruption elevates the IL-6 response to lipopolysaccharide in blood. J Biol Rhythm 28:272–277CrossRefGoogle Scholar
  2. Ahrens KA, Rossen LM, Simon AE (2016) Relationship between mean leucocyte telomere length and measures of allostatic load in us reproductive-aged women, NHANES 1999–2002. Paediatr Perinat Epidemiol 30:325–335PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alperin N, Bagci AM, Lee SH (2017) Spaceflight-induced changes in white matter hyperintensity burden in astronauts. Neurology 89:2187–2191PubMedCrossRefGoogle Scholar
  4. Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF (2005) Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci 8:365–371PubMedCrossRefGoogle Scholar
  5. Ardayfio P, Kim K-S (2006) Anxiogenic-like effect of chronic corticosterone in the light-dark emergency task in mice. Behav Neurosci 120:249–256PubMedCrossRefGoogle Scholar
  6. Bierhaus A, Wolf J, Andrassy M, Rohleder N, Humpert PM et al (2003) A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci U S A 100:1920–1925PubMedPubMedCentralCrossRefGoogle Scholar
  7. Biessels GJ, Reagan LP (2015) Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci 16:660–671PubMedCrossRefGoogle Scholar
  8. Blanc S, Geloen A, Normand S, Gharib C, Somody L (2001) Simulated weightlessness alters the nycthemeral distribution of energy expenditure in rats. J Exp Biol 204:4107–4113PubMedGoogle Scholar
  9. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462CrossRefGoogle Scholar
  10. Buchanan TW, Driscoll D, Mowrer SM, Sollers JJI, Thayer JF et al (2010) Medial prefrontal cortex damage affects physiological and psychological stress responses differently in men and women. Psychoneuroendocrinology 35:56–66PubMedPubMedCentralCrossRefGoogle Scholar
  11. Calabrese EJ (2008) Hormesis and medicine. Br J Clin Pharm 66:594–617Google Scholar
  12. Cameron HA, McKay RDG (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417PubMedCrossRefGoogle Scholar
  13. Cameron HA, Schoenfeld TJ (2018) Behavioral and structural adaptations to stress. Front Neuroendocrinol 49:106–113PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cameron H, Woolley C, McEwen BS, Gould E (1993) Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56:337–344PubMedCrossRefGoogle Scholar
  15. Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD et al (1993) Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A 90:10061–10065PubMedPubMedCentralCrossRefGoogle Scholar
  16. Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL et al (2010) Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol 185:5796–5805PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chattarji S, Tomar A, Suvrathan A, Ghosh S, Rahman MM (2015) Neighborhood matters: divergent patterns of stress-induced plasticity across the brain. Nat Neurosci 18:1364–1375PubMedCrossRefGoogle Scholar
  18. Cho K (2001) Chronic ‘jet lag’ produces temporal lobe atrophy and spatial cognitive deficits. Nat Neurosci 4:567–568PubMedCrossRefGoogle Scholar
  19. Chouker A, Kaufmann I, Kreth S, Hauer D, Feuerecker M et al (2010) Motion sickness, stress and the endocannabinoid system. PLoS One 5:e10752PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cockburn A, Lee AK (1988) Marsupial femmes fatales. Nat Hist 97:40–47Google Scholar
  21. Cohen S, Janicki-Deverts D, Miller GE (2007) Psychological stress and disease. JAMA 298:1685–1688PubMedCrossRefGoogle Scholar
  22. Conrad CD, Magarinos AM, LeDoux JE, McEwen BS (1999) Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav Neurosci 113:902–913PubMedCrossRefGoogle Scholar
  23. Crombag HS, Gorny G, Li Y, Kolb B, Robinson TE (2005) Opposite effects of amphetamine self-administration experience on dendritic spines in the medial and orbital prefrontal cortex. Cereb Cortex 15:341–348PubMedCrossRefGoogle Scholar
  24. Crucian B, Stowe R, Quiriarte H, Pierson D, Sams C (2011) Monocyte phenotype and cytokine production profiles are dysregulated by short-duration spaceflight. Aviat Space Environ Med 82:857–862PubMedCrossRefGoogle Scholar
  25. Crucian BE, Chouker A, Simpson RJ, Mehta S, Marshall G et al (2018) Immune system dysregulation during spaceflight: potential countermeasures for deep space exploration missions. Front Immunol 9:1437PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dakup P, Gaddameedhi S (2017) Impact of the circadian clock on UV-induced DNA damage response and photocarcinogenesis. Photochem Photobiol 93:296–303PubMedCrossRefGoogle Scholar
  27. David S, Stegenga SL, Hu P, Xiong G, Kerr E et al (2005) Expression of serum- and glucocorticoid-inducible kinase is regulated in an experience-dependent manner and can cause dendrite growth. J Neurosci 25:7048–7053PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dhabhar FS (2018) The short-term stress response – mother nature’s mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity. Front Neuroendocrinol 49:175–192PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dhabhar FS, McEwen BS (1997) Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav Immun 11:286–306PubMedCrossRefGoogle Scholar
  30. Dhabhar F, McEwen B (1999) Enhancing versus suppressive effects of stress hormones on skin immune function. Proc Natl Acad Sci U S A 96:1059–1064PubMedPubMedCentralCrossRefGoogle Scholar
  31. Diamond DM, Bennett MC, Fleshner M, Rose GM (1992) Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus 2:421–430PubMedCrossRefPubMedCentralGoogle Scholar
  32. Dias-Ferreira E, Sousa JC, Melo I, Morgado P, Mesquita AR et al (2009) Chronic stress causes frontostriatal reorganization and affects decision-making. Science 325:621–625PubMedCrossRefPubMedCentralGoogle Scholar
  33. Draganski B, Gaser C, Kempermann G, Kuhn HG, Winkler J et al (2006) Temporal and spatial dynamics of brain structure changes during extensive learning. J Neurosci 26:6314–6317PubMedPubMedCentralCrossRefGoogle Scholar
  34. Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME (1992) A functional anatomical study of unipolar depression. J Neurosci 12:3628–3641PubMedPubMedCentralCrossRefGoogle Scholar
  35. Duman RS, Nakagawa S, Malberg J (2001) Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 25:836–844PubMedCrossRefPubMedCentralGoogle Scholar
  36. Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L et al (2009) Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19(10):1030–1039PubMedPubMedCentralCrossRefGoogle Scholar
  37. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A et al (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 108:3017–3022PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fonken LK, Frank MG, Kitt MM, Barrientos RM, Watkins LR, Maier SF (2015) Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav Immun 45:171–179PubMedCrossRefGoogle Scholar
  39. Fortier EE, Rooney J, Dardente H, Hardy MP, Labrecque N, Cermakian N (2011) Circadian variation of the response of T cells to antigen. J Immunol 187:6291–6300PubMedCrossRefGoogle Scholar
  40. Frodl T, Meisenzahl EM, Zetzsche T, Born C, Jager M et al (2003) Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects. Biol Psychiatry 53:338–344PubMedCrossRefGoogle Scholar
  41. Gagnidze K, Hajdarovic KH, Moskalenko M, Karatsoreos IN, McEwen BS, Bulloch K (2016) Nuclear receptor REV-ERBalpha mediates circadian sensitivity to mortality in murine vesicular stomatitis virus-induced encephalitis. Proc Natl Acad Sci U S A 113:5730–5735PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gander PH, Macdonald JA, Montgomery JC, Paulin MG (1991) Adaptation of sleep and circadian rhythms to the Antarctic summer: a question of zeitgeber strength. Aviat Space Environ Med 62:1019–1025PubMedGoogle Scholar
  43. Gangwisch JE, Malaspina D, Boden-Albala B, Heymsfield SB (2005) Inadequate sleep as a risk factor for obesity: analyses of the NHANES I. Sleep 28:1289–1296PubMedCrossRefGoogle Scholar
  44. Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, McKenna MJ, Meydan C, Mishra T, Nasrini J, Piening BD, Rizzardi LF, Sharma K, Siamwala JH, Taylor L, Vitaterna MH, Afkarian M, Afshinnekoo E, Ahadi S, Ambati A, Arya M, Bezdan D, Callahan CM, Chen S, Choi AMK, Chlipala GE, Contrepois K, Covington M, Crucian BE, De Vivo I, Dinges DF, Ebert DJ, Feinberg JI, Gandara JA, George KA, Goutsias J, Grills GS, Hargens AR, Heer M, Hillary RP, Hoofnagle AN, Hook VYH, Jenkinson G, Jiang P, Keshavarzian A, Laurie SS, Lee-McMullen B, Lumpkins SB, MacKay M, Maienschein-Cline MG, Melnick AM, Moore TM, Nakahira K, Patel HH, Pietrzyk R, Rao V, Saito R, Salins DN, Schilling JM, Sears DD, Sheridan CK, Stenger MB, Tryggvadottir R, Urban AE, Vaisar T, Van Espen B, Zhang J, Ziegler MG, Zwart SR, Charles JB, Kundrot CE, Scott GBI, Bailey SM, Basner M, Feinberg AP, Lee SMC, Mason CE, Mignot E, Rana BK, Smith SM, Snyder MP, Turek FW (2019) The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science 364(6436):eaau8650. Scholar
  45. Gianaros PJ, Hariri AR, Sheu LK, Muldoon MF, Sutton-Tyrrell K, Manuck SB (2008a) Preclinical atherosclerosis covaries with individual differences in reactivity and functional connectivity of the amygdala. Biol Psychiatry 65(11):943–950PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gianaros PJ, Horenstein JA, Hariri AR, Sheu LK, Manuck SB et al (2008b) Potential neural embedding of parental social standing. Soc Cogn Affect Neurosci 3:91–96PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gold SM, Dziobek I, Sweat V, Tirsi A, Rogers K et al (2007) Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia 50:711–719PubMedCrossRefGoogle Scholar
  48. Gotz ME, Malz CR, Dirr A, Blum D, Gsell W et al (2005) Brain aging phenomena in migrating sockeye salmon Oncorhynchus nerka nerka. J Neural Transm 112:1177–1199PubMedCrossRefGoogle Scholar
  49. Gould E, Gross CG (2002) Neurogenesis in adult mammals: some progress and problems. J Neurosci 22:619–623PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ (1999) Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 2:260–265PubMedCrossRefGoogle Scholar
  51. Grillo CA, Piroli GG, Lawrence RC, Wrighten SA, Green AJ et al (2015) Hippocampal insulin resistance impairs spatial learning and synaptic plasticity. Diabetes 64:3927–3936PubMedCentralCrossRefPubMedGoogle Scholar
  52. Halberg F, Johnson EA, Brown BW, Bittner JJ (1960) Susceptibility rhythm to E. coli endotoxin and bioassay. Proc Soc Exp Biol Med 103:142–144PubMedCrossRefGoogle Scholar
  53. Harris A, Marquis P, Eriksen HR, Grant I, Corbett R et al (2010) Diurnal rhythm in British Antarctic personnel. Rural Remote Health 10:1351PubMedGoogle Scholar
  54. Hasan KM, Mwangi B, Keser Z, Riascos R, Sargsyan AE, Kramer LA (2018) Brain quantitative MRI metrics in astronauts as a unique professional group. J Neuroimaging 28:256–268PubMedCrossRefGoogle Scholar
  55. Hoban-Higgins TM, Alpatov AM, Wassmer GT, Rietveld WJ, Fuller CA (2003) Gravity and light effects on the circadian clock of a desert beetle, Trigonoscelis gigas. J Insect Physiol 49:671–675PubMedCrossRefGoogle Scholar
  56. Jacubowski A, Abeln V, Vogt T, Yi B, Chouker A et al (2015) The impact of long-term confinement and exercise on central and peripheral stress markers. Physiol Behav 152:106–111PubMedCrossRefGoogle Scholar
  57. Joels M (2006) Corticosteroid effects in the brain: U-shape it. Trends Pharmacol Sci 27:244–250PubMedCrossRefGoogle Scholar
  58. Karatsoreos IN, Bhagat SM, Bowles NP, Weil ZM, Pfaff DW, McEwen BS (2010) Endocrine and physiological changes in response to chronic corticosterone: a potential model of the metabolic syndrome in mouse. Endocrinology 151:2117–2127PubMedPubMedCentralCrossRefGoogle Scholar
  59. Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH, McEwen BS (2011) Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc Natl Acad Sci U S A 108:1657–1662PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kirschbaum C, Prussner JC, Stone AA, Federenko I, Gaab J et al (1995) Persistent high cortisol responses to repeated psychological stress in a subpopulation of healthy men. Psychosom Med 57:468–474PubMedCrossRefGoogle Scholar
  61. Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24:97–129PubMedCrossRefGoogle Scholar
  62. Labrecque N, Cermakian N (2015) Circadian clocks in the immune system. J Biol Rhythm 30:277–290CrossRefGoogle Scholar
  63. Lazarus RS, Folkman S (eds) (1984) Stress, appraisal and coping. Springer, New York, NYGoogle Scholar
  64. LeDoux J (2003) The emotional brain, fear, and the amygdala. Cell Mol Neurobiol 23:727–738PubMedCrossRefGoogle Scholar
  65. LeGates TA, Altimus CM, Wang H, Lee HK, Yang S et al (2012) Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature 491:594–598PubMedPubMedCentralCrossRefGoogle Scholar
  66. Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB et al (2006) Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci 26:7870–7874PubMedPubMedCentralCrossRefGoogle Scholar
  67. Liston C, McEwen BS, Casey BJ (2009) Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proc Natl Acad Sci U S A 106:912–917PubMedPubMedCentralCrossRefGoogle Scholar
  68. Macho L, Jezova D, Jurcovicova J, Kvetnansky R, Vigas M, Serova LB (1993) Effect of space flight on the development of endocrine functions in rats. Endocr Regul 27:17–22PubMedGoogle Scholar
  69. Magarinos AM, McEwen BS (1995) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors. Neuroscience 69:83–88PubMedCrossRefGoogle Scholar
  70. Magarinos AM, McEwen BS, Saboureau M, Pevet P (2006) Rapid and reversible changes in intrahippocampal connectivity during the course of hibernation in European hamsters. Proc Natl Acad Sci U S A 103:18775–18780PubMedCentralCrossRefPubMedGoogle Scholar
  71. Maguire EA, Frackowiak RSJ, Frith CD (1997) Recalling routes around London: activation of the right hippocampus in taxi drivers. J Neurosci 17:7103–7110PubMedPubMedCentralCrossRefGoogle Scholar
  72. Makino S, Gold PW, Schulkin J (1994) Corticosterone effects on corticotropin-releasing hormone mRNA in the central nucleus of the amygdala and the parvocellular region of the paraventricular nucleus of the hypothalamus. Brain Res 640:105–112PubMedCrossRefGoogle Scholar
  73. Maule AG, Tripp RA, Kaattari SL, Schreck CB (1989) Stress alters immune function and disease resistance in chinook salmon (Oncorhynchus tshawytscha). J Endocrinol 120:135–142CrossRefGoogle Scholar
  74. McEwen BS (1998) Protective and damaging effects of stress mediators. N Engl J Med 338:171–179PubMedCrossRefPubMedCentralGoogle Scholar
  75. McEwen BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22:105–122CrossRefGoogle Scholar
  76. McEwen BS (2006) Protective and damaging effects of stress mediators: central role of the brain. Dial Clin Neurosci Stress 8:367–381Google Scholar
  77. McEwen BS (2007) The physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87(3):873–904PubMedCrossRefGoogle Scholar
  78. McEwen BS, Gianaros PJ (2010) Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann N Y Acad Sci 1186:190–222PubMedPubMedCentralCrossRefGoogle Scholar
  79. McEwen BS, Morrison JH (2013) The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 79:16–29PubMedPubMedCentralCrossRefGoogle Scholar
  80. McEwen BS, Seeman T (1999) Protective and damaging effects of mediators of stress: elaborating and testing the concepts of allostasis and allostatic load. Ann N Y Acad Sci 896:30–47PubMedCrossRefGoogle Scholar
  81. McEwen BS, Stellar E (1993) Stress and the Individual: mechanisms leading to disease. Arch Intern Med 153:2093–2101PubMedCrossRefGoogle Scholar
  82. McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15PubMedCrossRefGoogle Scholar
  83. McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG et al (2015) Mechanisms of stress in the brain. Nat Neurosci 18:1353–1363PubMedPubMedCentralCrossRefGoogle Scholar
  84. McKittrick CR, Magarinos AM, Blanchard DC, Blanchard RJ, McEwen BS, Sakai RR (2000) Chronic social stress reduces dendritic arbors in CA3 of hippocampus and decreases binding to serotonin transporter sites. Synapse 36:85–94PubMedCrossRefGoogle Scholar
  85. Mendt S, Maggioni MA, Nordine M, Steinach M, Opatz O et al (2017) Circadian rhythms in bed rest: monitoring core body temperature via heat-flux approach is superior to skin surface temperature. Chronobiol Int 34:666–676PubMedCrossRefGoogle Scholar
  86. Menz MM, Rihm JS, Salari N, Born J, Kalisch R et al (2013) The role of sleep and sleep deprivation in consolidating fear memories. NeuroImage 75:87–96PubMedCrossRefGoogle Scholar
  87. Moidunny S, Dias RB, Wesseling E, Sekino Y, Boddeke HW et al (2010) Interleukin-6-type cytokines in neuroprotection and neuromodulation: oncostatin M, but not leukemia inhibitory factor, requires neuronal adenosine A1 receptor function. J Neurochem 114:1667–1677PubMedCrossRefGoogle Scholar
  88. Monk TH, Kennedy KS, Rose LR, Linenger JM (2001) Decreased human circadian pacemaker influence after 100 days in space: a case study. Psychosom Med 63:881–885PubMedCrossRefGoogle Scholar
  89. Munhoz CD, Sorrells SF, Caso JR, Scavone C, Sapolsky RM (2010) Glucocorticoids exacerbate lipopolysaccharide-induced signaling in the frontal cortex and hippocampus in a dose-dependent manner. J Neurosci 30:13690–13698PubMedPubMedCentralCrossRefGoogle Scholar
  90. Nelson RA (1980) Protein and fat metabolism in hibernating bears. Fed Proc 39:2955–2958PubMedGoogle Scholar
  91. Niedhammer I, Lert F, Marne MJ (1996) Prevalence of overweight and weight gain in relation to night work in a nurses’ cohort. Int J Obes Relat Metab Disord 20:625–633PubMedGoogle Scholar
  92. Okamoto M, Hojo Y, Inoue K, Matsui T, Kawato S et al (2012) Mild exercise increases dihydrotestosterone in hippocampus providing evidence for androgenic mediation of neurogenesis. Proc Natl Acad Sci U S A 109:13100–13105PubMedPubMedCentralCrossRefGoogle Scholar
  93. Patterson PH (1992) The emerging neuropoietic cytokine family: first CDF/LIF, CNTF and IL-6; next ONC, MGF, GCSF? Curr Opin Neurobiol 2:94–97PubMedCrossRefGoogle Scholar
  94. Pattyn N, Mairesse O, Cortoos A, Marcoen N, Neyt X, Meeusen R (2017) Sleep during an Antarctic summer expedition: new light on “polar insomnia”. J Appl Physiol (1985) 122:788–794CrossRefGoogle Scholar
  95. Pavlides C, Ogawa S, Kimura A, McEwen B (1996) Role of adrenal steroid mineralocorticoid and glucocorticoid receptors in long-term potentiation in the CA1 field of hippocampal slices. Brain Res 738:229–235PubMedCrossRefGoogle Scholar
  96. Petrovich GD, Canteras NS, Swanson LW (2001) Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res Rev 38:247–289PubMedCrossRefGoogle Scholar
  97. Phillips DJ, Savenkova MI, Karatsoreos IN (2015) Environmental disruption of the circadian clock leads to altered sleep and immune responses in mouse. Brain Behav Immun 47:14–23PubMedCrossRefGoogle Scholar
  98. Piazza JR, Stawski RS, Sheffler JL (2018) Age, daily stress processes, and allostatic load: a longitudinal study. J Aging Health 2018:898264318788493Google Scholar
  99. Popov VI, Bocharova LS, Bragin AG (1992) Repeated changes of dendritic morphology in the hippocampus of ground squirrels in the course of hibernation. Neuroscience 48:45–51PubMedCrossRefGoogle Scholar
  100. van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci 96:13427–13431PubMedPubMedCentralCrossRefGoogle Scholar
  101. Prather AA, Epel ES, Portela Parra E, Coccia M, Puterman E et al (2018) Associations between chronic caregiving stress and T cell markers implicated in immunosenescence. Brain Behav Immun 73:546–549PubMedPubMedCentralCrossRefGoogle Scholar
  102. Pruessner JC, Hellhammer DH, Kirschbaum C (1999) Low self-esteem, induced failure and the adrenocortical stress response. Personal Individ Differ 27:477–489CrossRefGoogle Scholar
  103. Pruessner JC, Baldwin MW, Dedovic K, Renwick RM, Mahani NK, Lord C et al (2005) Self-esteem, locus of control, hippocampal volume, and cortisol regulation in young and old adulthood. NeuroImage 28:815–826PubMedCrossRefGoogle Scholar
  104. Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T et al (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125:1–6PubMedCrossRefGoogle Scholar
  105. Rahman SA, Castanon-Cervantes O, Scheer FA, Shea SA, Czeisler CA et al (2015) Endogenous circadian regulation of pro-inflammatory cytokines and chemokines in the presence of bacterial lipopolysaccharide in humans. Brain Behav Immun 47:4–13PubMedCrossRefGoogle Scholar
  106. Roberts DR, Albrecht MH, Collins HR, Asemani D, Chatterjee AR et al (2017) Effects of spaceflight on astronaut brain structure as indicated on MRI. N Engl J Med 377:1746–1753CrossRefGoogle Scholar
  107. Robinson TE, Kolb B (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J Neurosci 17:8491–8497PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sapolsky R (1992) Stress, the aging brain and the mechanisms of neuron death, vol 1. MIT Press, Cambridge, p 423Google Scholar
  109. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89PubMedGoogle Scholar
  110. Sarkar P, Sarkar S, Ramesh V, Hayes BE, Thomas RL et al (2006) Proteomic analysis of mice hippocampus in simulated microgravity environment. J Proteome Res 5:548–553PubMedCentralCrossRefPubMedGoogle Scholar
  111. Scheer FA, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106:4453–4458PubMedPubMedCentralCrossRefGoogle Scholar
  112. Scheiermann C, Gibbs J, Ince L, Loudon A (2018) Clocking in to immunity. Nat Rev Immunol 18:423–437PubMedCrossRefGoogle Scholar
  113. Seeman T, Epel E, Gruenewald T, Karlamangla A, McEwen BS (2010) Socio-economic differentials in peripheral biology: cumulative allostatic load. Ann N Y Acad Sci 1186:223–239PubMedCrossRefGoogle Scholar
  114. Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160PubMedPubMedCentralCrossRefGoogle Scholar
  115. Sheline YI, Gado MH, Price JL (1998) Amygdala core nuclei volumes are decreased in recurrent major depression. Neuroreport 9:2023–2028PubMedCrossRefGoogle Scholar
  116. Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA (2001) Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry 50:651–658PubMedCrossRefGoogle Scholar
  117. Shonkoff JP, Boyce WT, McEwen BS (2009) Neuroscience, molecular biology, and the childhood roots of health disparities. JAMA 301:2252–2259PubMedCrossRefGoogle Scholar
  118. Shors TJ, Mathew J, Sisti HM, Edgecomb C, Beckoff S, Dalla C (2007) Neurogenesis and helplessness are mediated by controllability in males but not in females. Biol Psychiatry 62:487–495PubMedPubMedCentralCrossRefGoogle Scholar
  119. Spiegel K, Leproult R, Van Cauter E (1999) Impact of sleep debt on metabolic and endocrine function. Lancet 354:1435–1439CrossRefGoogle Scholar
  120. Spiegel K, Tasali E, Penev P, Van Cauter E (2004) Brief communication: sleep curtailment in healthy young men is associaed with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med 141:846–850PubMedCrossRefGoogle Scholar
  121. Stahn AC, Werner A, Opatz O, Maggioni MA, Steinach M et al (2017) Increased core body temperature in astronauts during long-duration space missions. Sci Rep 7:16180PubMedPubMedCentralCrossRefGoogle Scholar
  122. Sterling P, Eyer J (1988) Allostasis: a new paradigm to explain arousal pathology. In: Fisher S, Reason J (eds) Handbook of life stress, cognition and health. John Wiley & Sons, New York, NY, pp 629–649Google Scholar
  123. Stowe RP, Sams CF, Pierson DL (2011) Adrenocortical and immune responses following short- and long-duration spaceflight. Aviat Space Environ Med 82:627–634PubMedCrossRefGoogle Scholar
  124. Strollo F, Strollo G, More M, Bollanti L, Ciarmatori A et al (1998) Hormonal adaptation to real and simulated microgravity. J Gravit Physiol 5:P89–P92PubMedGoogle Scholar
  125. Thayer JF, Lane RD (2000) A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord 61:201–216PubMedCrossRefGoogle Scholar
  126. Tipton CM, Greenleaf JE, Jackson CG (1996) Neuroendocrine and immune system responses with spaceflights. Med Sci Sports Exerc 28:988–998PubMedCrossRefGoogle Scholar
  127. Tomiyama AJ, O'Donovan A, Lin J, Puterman E, Lazaro A et al (2012) Does cellular aging relate to patterns of allostasis? An examination of basal and stress reactive HPA axis activity and telomere length. Physiol Behav 106:40–45PubMedCrossRefGoogle Scholar
  128. Trejo JL, Carro E, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21:1628–1634PubMedPubMedCentralCrossRefGoogle Scholar
  129. Van Cauter E, Polonsky KS, Scheen AJ (1997) Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev 18:716–738Google Scholar
  130. Vgontzas AN, Zoumakis E, Bixler EO, Lin H-M, Follett H et al (2004) Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab 89:2119–2126PubMedCrossRefGoogle Scholar
  131. Vyas A, Mitra R, Rao BSS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22:6810–6818PubMedPubMedCentralCrossRefGoogle Scholar
  132. Wang H, van Spyk E, Liu Q, Geyfman M, Salmans ML et al (2017) Time-restricted feeding shifts the skin circadian clock and alters UVB-induced DNA damage. Cell Rep 20:1061–1072PubMedPubMedCentralCrossRefGoogle Scholar
  133. Wellman CL (2001) Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J Neurobiol 49:245–253PubMedCrossRefGoogle Scholar
  134. Wild CP (2012) The exposome: from concept to utility. Int J Epidemiol 41:24–32PubMedCrossRefGoogle Scholar
  135. Wingfield JC, Romero LM (2000) Adrenocortical responses to stress and their modulation in free-living vertebrates. In: Coping with the environment: neural and endocrine mechanisms. Oxford University Press, New York, NY, pp 211–234Google Scholar
  136. Wood GE, Shors TJ (1998) Stress facilitates classical conditioning in males, but impairs classical conditioning in females through activational effects of ovarian hormones. Proc Natl Acad Sci U S A 95:4066–4071PubMedPubMedCentralCrossRefGoogle Scholar
  137. Wood GE, Norris EH, Waters E, Stoldt JT, McEwen BS (2008) Chronic immobilization stress alters aspects of emotionality and associative learning in the rat. Behav Neurosci 122:282–292PubMedCrossRefGoogle Scholar
  138. Yoo S-S, Gujar N, Hu P, Jolesz FA, Walker MP (2007) The human emotional brain without sleep – a prefronta amygdala disconnect. Curr Biol 17:R877–RR78PubMedCrossRefGoogle Scholar
  139. Zalli A, Carvalho LA, Lin J, Hamer M, Erusalimsky JD et al (2014) Shorter telomeres with high telomerase activity are associated with raised allostatic load and impoverished psychosocial resources. Proc Natl Acad Sci U S A 111:4519–4524PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Harold and Margaret Milliken Hatch Laboratory of NeuroendocrinologyThe Rockefeller UniversityNew YorkUSA
  2. 2.Department of Integrative Physiology and Neuroscience, Sleep and Performance Research CenterWashington State UniversityPullmanUSA

Personalised recommendations