Advertisement

Microbiome and Immunity: A Critical Link for Long-Duration Space Exploration Missions

  • Hernan LorenziEmail author
Chapter

Abstract

The human microbiome is the collection of trillions of microorganisms that live in and on the human body. It is mostly composed of bacteria, viruses, archaea, and unicellular eukaryotes that have coevolved with us over millions of years. The microbiome is essential to human health, being involved in the processing and absorption of complex nutrients, the synthesis of vitamins and antioxidants, the maturation and modulation of the immune system and the prevention of infections by pathogenic organisms. Therefore, qualitative or quantitative shifts in the gut microbiota, commonly known as dysbiosis, as a consequence of host pathobiology, alterations of diet, medications, and other environmental triggers, can perturb critical inter-microbe as well as host–microbe relationships to initiate pathophysiological processes leading to human disease. To maintain health, the immune system plays an essential role in maintaining a delicate balance between eliminating invading pathogens and keeping the homeostatic relationship with beneficial resident microorganisms of the gastrointestinal tract. At the same time, resident bacteria have a significant immunomodulatory activity that profoundly shape mammalian immunity. During a mission to space, astronauts are exposed to a number of stressors (microgravity, sleep deprivation, radiation, dietary changes, etc.) that are likely to affect the composition and dynamic of the astronauts’ microbiome. Several studies on specific culturable commensal and opportunistic pathogenic bacteria performed under real or simulated microgravity conditions suggest that space travel can affect the composition and function of the microbiome, including bacterial virulence, antibiotic resistance, and growth. This chapter will focus on what is currently known about the interaction between the human intestinal microbiota and the immune response and how conditions found in space might alter this interaction and pose a risk to astronauts’ health.

References

  1. Acharya N, Penukonda S, Shcheglova T, Hagymasi AT, Basu S, Srivastava PK (2017) Endocannabinoid system acts as a regulator of immune homeostasis in the gut. Proc Natl Acad Sci U S A 114:5005–5010PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ, Powrie F (2010) Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33:279–288PubMedPubMedCentralCrossRefGoogle Scholar
  3. Allebban Z, Ichiki AT, Gibson LA, Jones JB, Congdon CC, Lange RD (1994) Effects of spaceflight on the number of rat peripheral blood leukocytes and lymphocyte subsets. J Leukoc Biol 55:209–213PubMedCrossRefPubMedCentralGoogle Scholar
  4. Allen CA, Niesel DW, Torres AG (2008) The effects of low-shear stress on Adherent-invasive Escherichia coli. Environ Microbiol 10:1512–1525PubMedCrossRefPubMedCentralGoogle Scholar
  5. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–455PubMedPubMedCentralCrossRefGoogle Scholar
  6. Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, Khan MT, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D, Lee YS, Kotowska D, Colding C, Tremaroli V, Yin Y, Bergman S, Xu X, Madsen L, Kristiansen K, Dahlgren J, Wang J (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:852PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bailey MT (2014) Influence of stressor-induced nervous system activation on the intestinal microbiota and the importance for immunomodulation. Adv Exp Med Biol 817:255–276PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bailey MT, Engler H, Sheridan JF (2006) Stress induces the translocation of cutaneous and gastrointestinal microflora to secondary lymphoid organs of C57BL/6 mice. J Neuroimmunol 171:29–37PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 25:397–407PubMedCrossRefPubMedCentralGoogle Scholar
  10. Batkai L, Varkonyi A, Minarovits J (1999) The effect of simulated microgravity conditions on the TNF-alpha production by human PBMCS. J Gravit Physiol 6:P109–P110PubMedPubMedCentralGoogle Scholar
  11. Benoit MR, Li W, Stodieck LS, Lam KS, Winther CL, Roane TM, Klaus DM (2006) Microbial antibiotic production aboard the International Space Station. Appl Microbiol Biotechnol 70:403–411PubMedCrossRefPubMedCentralGoogle Scholar
  12. Brandl K, Plitas G, Schnabl B, DeMatteo RP, Pamer EG (2007) MyD88-mediated signals induce the bactericidal lectin RegIII gamma and protect mice against intestinal Listeria monocytogenes infection. J Exp Med 204:1891–1900PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brown LR, Fromme WJ, Handler SF, Wheatcroft MG, Johnston DA (1976) Effect of Skylab missions on clinical and microbiologic aspects of oral health. J Am Dent Assoc 93:357–363PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cameron DJ (1985) Specificity of macrophage-mediated cytotoxicity: role of target and effector cell fucose. Immunol Lett 11:39–44PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cani PD, Plovier H, Van Hul M, Geurts L, Delzenne NM, Druart C, Everard A (2016) Endocannabinoids--at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol 12:133–143PubMedCrossRefPubMedCentralGoogle Scholar
  16. Castro SL, Nelman-Gonzalez M, Nickerson CA, Ott CM (2011) Induction of attachment-independent biofilm formation and repression of Hfq expression by low-fluid-shear culture of Staphylococcus aureus. Appl Environ Microbiol 77:6368–6378PubMedPubMedCentralCrossRefGoogle Scholar
  17. Castro-Wallace S, Stahl S, Voorhies A, Lorenzi H, Douglas GL (2017) Response of Lactobacillus acidophilus ATCC 4356 to low-shear modeled microgravity. Acta Astronaut 139:463–468CrossRefGoogle Scholar
  18. Chapes SK, Morrison DR, Guikema JA, Lewis ML, Spooner BS (1992) Cytokine secretion by immune cells in space. J Leukoc Biol 52:104–110PubMedCrossRefPubMedCentralGoogle Scholar
  19. Ciferri O, Tiboni O, Di Pasquale G, Orlandoni AM, Marchesi ML (1986) Effects of microgravity on genetic recombination in Escherichia coli. Naturwissenschaften 73:418–421PubMedCrossRefPubMedCentralGoogle Scholar
  20. Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN (2010) Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 16:228–231PubMedPubMedCentralCrossRefGoogle Scholar
  21. Coghill JM, Sarantopoulos S, Moran TP, Murphy WJ, Blazar BR, Serody JS (2011) Effector CD4+ T cells, the cytokines they generate, and GVHD: something old and something new. Blood 117:3268–3276PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cogoli A (1993) The effect of space flight on human cellular immunity. Environ Med 37:107–116PubMedPubMedCentralGoogle Scholar
  23. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697PubMedPubMedCentralCrossRefGoogle Scholar
  24. Crabbe A, Pycke B, Van Houdt R, Monsieurs P, Nickerson C, Leys N, Cornelis P (2010) Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation. Environ Microbiol 12:1545–1564PubMedPubMedCentralGoogle Scholar
  25. Crabbe A, Schurr MJ, Monsieurs P, Morici L, Schurr J, Wilson JW, Ott CM, Tsaprailis G, Pierson DL, Stefanyshyn-Piper H, Nickerson CA (2011) Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Appl Environ Microbiol 77:1221–1230PubMedCrossRefPubMedCentralGoogle Scholar
  26. Crucian B, Sams C (2009) HRP evidence report: risk of crew adverse health event due to altered immune response. HRP evidence report. NASA, Washington, DCGoogle Scholar
  27. Crucian BE, Zwart SR, Mehta S, Uchakin P, Quiriarte HD, Pierson D, Sams CF, Smith SM (2014a) Plasma cytokine concentrations indicate that in vivo hormonal regulation of immunity is altered during long-duration spaceflight. J Interferon Cytokine Res 34:778–786PubMedPubMedCentralCrossRefGoogle Scholar
  28. Crucian B, Simpson RJ, Mehta S, Stowe R, Chouker A, Hwang SA, Actor JK, Salam AP, Pierson D, Sams C (2014b) Terrestrial stress analogs for spaceflight associated immune system dysregulation. Brain Behav Immun 39:23–32PubMedCrossRefPubMedCentralGoogle Scholar
  29. Crucian B, Stowe RP, Mehta S, Quiriarte H, Pierson D, Sams C (2015) Alterations in adaptive immunity persist during long-duration spaceflight. NPJ Microgravity 1:15013PubMedPubMedCentralCrossRefGoogle Scholar
  30. Crucian B, Johnston S, Mehta S, Stowe R, Uchakin P, Quiriarte H, Pierson D, Laudenslager ML, Sams C (2016) A case of persistent skin rash and rhinitis with immune system dysregulation onboard the International Space Station. J Allergy Clin Immunol Pract 4:759–762e8PubMedCrossRefPubMedCentralGoogle Scholar
  31. Crucian BE, Chouker A, Simpson RJ, Mehta S, Marshall G, Smith SM, Zwart SR, Heer M, Ponomarev S, Whitmire A, Frippiat JP, Douglas GL, Lorenzi H, Buchheim JI, Makedonas G, Ginsburg GS, Ott CM, Pierson DL, Krieger SS, Baecker N, Sams C (2018) Immune system dysregulation during spaceflight: potential countermeasures for deep space exploration missions. Front Immunol 9:1437PubMedPubMedCentralCrossRefGoogle Scholar
  32. De Palma G, Blennerhassett P, Lu J, Deng Y, Park AJ, Green W, Denou E, Silva MA, Santacruz A, Sanz Y, Surette MG, Verdu EF, Collins SM, Bercik P (2015) Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun 6:7735PubMedCrossRefPubMedCentralGoogle Scholar
  33. Decelle JG, Taylor GR (1976) Autoflora in the upper respiratory tract of Apollo astronauts. Appl Environ Microbiol 32:659–665PubMedPubMedCentralGoogle Scholar
  34. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, Flavell RA (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745–757PubMedPubMedCentralCrossRefGoogle Scholar
  35. Eriguchi Y, Nakamura K, Hashimoto D, Shimoda S, Shimono N, Akashi K, Ayabe T, Teshima T (2015) Decreased secretion of Paneth cell alpha-defensins in graft-versus-host disease. Transpl Infect Dis 17:702–706PubMedCrossRefPubMedCentralGoogle Scholar
  36. Feuerecker M, Crucian BE, Quintens R, Buchheim JI, Salam AP, Rybka A, Moreels M, Strewe C, Stowe R, Mehta S, Schelling G, Thiel M, Baatout S, Sams C, Chouker A (2019) Immune sensitization during one year in the Antarctic high altitude Concordia Environment. Allergy 74:64.  https://doi.org/10.1111/all.13545CrossRefPubMedPubMedCentralGoogle Scholar
  37. Foster JS, Khodadad CL, Ahrendt SR, Parrish ML (2013) Impact of simulated microgravity on the normal developmental time line of an animal-bacteria symbiosis. Sci Rep 3:1340PubMedPubMedCentralCrossRefGoogle Scholar
  38. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450PubMedCrossRefPubMedCentralGoogle Scholar
  39. Ganji-Arjenaki M, Rafieian-Kopaei M (2018) Probiotics are a good choice in remission of inflammatory bowel diseases: a meta analysis and systematic review. J Cell Physiol 233:2091–2103PubMedCrossRefPubMedCentralGoogle Scholar
  40. Gebbers JO, Laissue JA (1989) Immunologic structures and functions of the gut. Schweiz Arch Tierheilkd 131:221–238PubMedPubMedCentralGoogle Scholar
  41. Gibson GR, Wang X (1994) Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J Appl Bacteriol 77:412–420PubMedCrossRefPubMedCentralGoogle Scholar
  42. Gmunder FK, Konstantinova I, Cogoli A, Lesnyak A, Bogomolov W, Grachov AW (1994) Cellular immunity in cosmonauts during long duration spaceflight on board the orbital MIR station. Aviat Space Environ Med 65:419–423PubMedPubMedCentralGoogle Scholar
  43. Gomez del Pulgar T, Benitah SA, Valeron PF, Espina C, Lacal JC (2005) Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays 27:602–613PubMedCrossRefPubMedCentralGoogle Scholar
  44. Goncharova GI, Liz’ko NN, Liannaia AM, Shilov VM, Spitsa TI (1981) Bifidobacterium flora status of cosmonauts before and after completing space flights. Kosm Biol Aviakosm Med 15:14–18PubMedPubMedCentralGoogle Scholar
  45. Hales NW, Yamauchi K, Alicea A, Sundaresan A, Pellis NR, Kulkarni AD (2002) A countermeasure to ameliorate immune dysfunction in in vitro simulated microgravity environment: role of cellularnucleotide nutrition. In Vitro Cell Dev Biol Anim 38:213–217PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hammond TG, Stodieck L, Birdsall HH, Becker JL, Koenig P, Hammond JS, Gunter MA, Allen PL (2013) Effects of microgravity on the virulence of Listeria monocytogenes, Enterococcus faecalis, Candida albicans, and methicillin-resistant Staphylococcus aureus. Astrobiology 13:1081–1090PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hayase E, Hashimoto D, Nakamura K, Noizat C, Ogasawara R, Takahashi S, Ohigashi H, Yokoi Y, Sugimoto R, Matsuoka S, Ara T, Yokoyama E, Yamakawa T, Ebata K, Kondo T, Hiramine R, Aizawa T, Ogura Y, Hayashi T, Mori H, Kurokawa K, Tomizuka K, Ayabe T, Teshima T (2017) R-Spondin1 expands Paneth cells and prevents dysbiosis induced by graft-versus-host disease. J Exp Med 214:3507–3518PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ichiki AT, Gibson LA, Jago TL, Strickland KM, Johnson DL, Lange RD, Allebban Z (1996) Effects of spaceflight on rat peripheral blood leukocytes and bone marrow progenitor cells. J Leukoc Biol 60:37–43PubMedCrossRefPubMedCentralGoogle Scholar
  49. Ilyin VK (2005) Microbiological status of cosmonauts during orbital spaceflights on Salyut and Mir orbital stations. Acta Astronaut 56:839–850PubMedCrossRefPubMedCentralGoogle Scholar
  50. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, Fukase K, Inamura S, Kusumoto S, Hashimoto M, Foster SJ, Moran AP, Fernandez-Luna JL, Nunez G (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 278:5509–5512PubMedCrossRefPubMedCentralGoogle Scholar
  51. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kaur I, Simons ER, Castro VA, Mark Ott C, Pierson DL (2004) Changes in neutrophil functions in astronauts. Brain Behav Immun 18:443–450PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kaur I, Simons ER, Castro VA, Ott CM, Pierson DL (2005) Changes in monocyte functions of astronauts. Brain Behav Immun 19:547–554PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kelsall B (2008) Recent progress in understanding the phenotype and function of intestinal dendritic cells and macrophages. Mucosal Immunol 1:460–469PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kim W, Tengra FK, Shong J, Marchand N, Chan HK, Young Z, Pangule RC, Parra M, Dordick JS, Plawsky JL, Collins CH (2013a) Effect of spaceflight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability. BMC Microbiol 13:241PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kim W, Tengra FK, Young Z, Shong J, Marchand N, Chan HK, Pangule RC, Parra M, Dordick JS, Plawsky JL, Collins CH (2013b) Spaceflight promotes biofilm formation by Pseudomonas aeruginosa. PLoS One 8:e62437PubMedPubMedCentralCrossRefGoogle Scholar
  57. Klaus DM, Howard HN (2006) Antibiotic efficacy and microbial virulence during space flight. Trends Biotechnol 24:131–136PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G, Flavell RA (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731–734PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lawal A, Jejelowo OA, Rosenzweig JA (2010) The effects of low-shear mechanical stress on Yersinia pestis virulence. Astrobiology 10:881–888PubMedCrossRefPubMedCentralGoogle Scholar
  60. Lawal A, Kirtley ML, van Lier CJ, Erova TE, Kozlova EV, Sha J, Chopra AK, Rosenzweig JA (2013) The effects of modeled microgravity on growth kinetics, antibiotic susceptibility, cold growth, and the virulence potential of a Yersinia pestis ymoA-deficient mutant and its isogenic parental strain. Astrobiology 13:821–832PubMedPubMedCentralCrossRefGoogle Scholar
  61. Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175:7512–7518PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lencner AA, Lencner CP, Mikelsaar ME, Tjuri ME, Toom MA, Valjaots ME, Silov VM, Liz’ko NN, Legenkov VI, Reznikov IM (1984) The quantitative composition of the intestinal lactoflora before and after space flights of different lengths. Nahrung 28:607–613PubMedCrossRefPubMedCentralGoogle Scholar
  63. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lievin V, Peiffer I, Hudault S, Rochat F, Brassart D, Neeser JR, Servin AL (2000) Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut 47:646–652PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lizko NN, Silov VM, Syrych GD (1984) Events in he development of dysbacteriosis of the intestines in man under extreme conditions. Nahrung 28:599–605PubMedCrossRefPubMedCentralGoogle Scholar
  66. Louis F, Deroanne C, Nusgens B, Vico L, Guignandon A (2015) RhoGTPases as key players in mammalian cell adaptation to microgravity. Biomed Res Int 2015:747693PubMedCentralGoogle Scholar
  67. Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, Maruya M, Ian McKenzie C, Hijikata A, Wong C, Binge L, Thorburn AN, Chevalier N, Ang C, Marino E, Robert R, Offermanns S, Teixeira MM, Moore RJ, Flavell RA, Fagarasan S, Mackay CR (2015) Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 6:6734CrossRefGoogle Scholar
  68. Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM (2000) A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288:2222–2226PubMedCrossRefPubMedCentralGoogle Scholar
  69. McLean RJ, Cassanto JM, Barnes MB, Koo JH (2001) Bacterial biofilm formation under microgravity conditions. FEMS Microbiol Lett 195:115–119PubMedCrossRefPubMedCentralGoogle Scholar
  70. Mehrpouya-Bahrami P, Chitrala KN, Ganewatta MS, Tang C, Murphy EA, Enos RT, Velazquez KT, McCellan J, Nagarkatti M, Nagarkatti P (2017) Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity. Sci Rep 7:15645PubMedPubMedCentralCrossRefGoogle Scholar
  71. Mehta SK, Crucian BE, Stowe RP, Simpson RJ, Ott CM, Sams CF, Pierson DL (2013) Reactivation of latent viruses is associated with increased plasma cytokines in astronauts. Cytokine 61:205–209PubMedCrossRefPubMedCentralGoogle Scholar
  72. Mehta SK, Laudenslager ML, Stowe RP, Crucian BE, Sams CF, Pierson DL (2014) Multiple latent viruses reactivate in astronauts during Space Shuttle missions. Brain Behav Immun 41:210–217PubMedCrossRefPubMedCentralGoogle Scholar
  73. Muccioli GG, Naslain D, Backhed F, Reigstad CS, Lambert DM, Delzenne NM, Cani PD (2010) The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 6:392PubMedPubMedCentralCrossRefGoogle Scholar
  74. Nickerson CA, Ott CM, Mister SJ, Morrow BJ, Burns-Keliher L, Pierson DL (2000) Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect Immun 68:3147–3152PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ogura Y, Lala S, Xin W, Smith E, Dowds TA, Chen FF, Zimmermann E, Tretiakova M, Cho JH, Hart J, Greenson JK, Keshav S, Nunez G (2003) Expression of NOD2 in Paneth cells: a possible link to Crohn’s ileitis. Gut 52:1591–1597PubMedPubMedCentralCrossRefGoogle Scholar
  76. Ott CM, Oubre C, Wallace S, Mehta SK, Pierson DL (2016) Risk of adverse health effects due to host-microorganisms interactions. NASA, Human Health Countermeasures (HHC) Element, Washington, DCGoogle Scholar
  77. Ottman N, Smidt H, de Vos WM, Belzer C (2012) The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol 2:104PubMedPubMedCentralCrossRefGoogle Scholar
  78. Pachenari M, Seyedpour SM, Janmaleki M, Babazadeh Shayan S, Taranejoo S, Hosseinkhani H (2014) Mechanical properties of cancer cytoskeleton depend on actin filaments to microtubules content: investigating different grades of colon cancer cell lines. J Biomech 47:373–379PubMedCrossRefPubMedCentralGoogle Scholar
  79. Paulsen K, Tauber S, Dumrese C, Bradacs G, Simmet DM, Golz N, Hauschild S, Raig C, Engeli S, Gutewort A, Hurlimann E, Biskup J, Unverdorben F, Rieder G, Hofmanner D, Mutschler L, Krammer S, Buttron I, Philpot C, Huge A, Lier H, Barz I, Engelmann F, Layer LE, Thiel CS, Ullrich O (2015) Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity. Biomed Res Int 2015:538786PubMedCentralCrossRefGoogle Scholar
  80. Peterson DA, McNulty NP, Guruge JL, Gordon JI (2007) IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2:328–339PubMedCrossRefPubMedCentralGoogle Scholar
  81. Pull SL, Doherty JM, Mills JC, Gordon JI, Stappenbeck TS (2005) Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci U S A 102:99–104PubMedCrossRefPubMedCentralGoogle Scholar
  82. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241PubMedCrossRefPubMedCentralGoogle Scholar
  83. Rea K, Dinan TG, Cryan JF (2016) The microbiome: a key regulator of stress and neuroinflammation. Neurobiol Stress 4:23–33PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ritchie LE, Taddeo SS, Weeks BR, Lima F, Bloomfield SA, Azcarate-Peril MA, Zwart SR, Smith SM, Turner ND (2015) Space environmental factor impacts upon murine colon microbiota and mucosal homeostasis. PLoS One 10:e0125792PubMedPubMedCentralCrossRefGoogle Scholar
  85. Saei AA, Barzegari A (2012) The microbiome: the forgotten organ of the astronaut’s body--probiotics beyond terrestrial limits. Future Microbiol 7:1037–1046PubMedCrossRefPubMedCentralGoogle Scholar
  86. Savary CA, Grazziuti ML, Przepiorka D, Tomasovic SP, McIntyre BW, Woodside DG, Pellis NR, Pierson DL, Rex JH (2001) Characteristics of human dendritic cells generated in a microgravity analog culture system. In Vitro Cell Dev Biol Anim 37:216–222PubMedCrossRefPubMedCentralGoogle Scholar
  87. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533PubMedPubMedCentralCrossRefGoogle Scholar
  88. Shao D, Yao L, Riaz MS, Zhu J, Shi J, Jin M, Huang Q, Yang H (2017) Simulated microgravity affects some biological characteristics of Lactobacillus acidophilus. Appl Microbiol Biotechnol 101:3439–3449CrossRefGoogle Scholar
  89. Shen Y, Giardino Torchia ML, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK (2012) Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 12:509–520PubMedPubMedCentralCrossRefGoogle Scholar
  90. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, Kunisawa J, Shibata N, Grunberg S, Sinha R, Zahm AM, Tardif MR, Sathaliyawala T, Kubota M, Farber DL, Collman RG, Shaked A, Fouser LA, Weiner DB, Tessier PA, Friedman JR, Kiyono H, Bushman FD, Chang KM, Artis D (2012) Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336:1321–1325PubMedPubMedCentralCrossRefGoogle Scholar
  92. Stowe RP, Sams CF, Mehta SK, Kaur I, Jones ML, Feeback DL, Pierson DL (1999) Leukocyte subsets and neutrophil function after short-term spaceflight. J Leukoc Biol 65:179–186PubMedCrossRefPubMedCentralGoogle Scholar
  93. Strewe C, Feuerecker M, Nichiporuk I, Kaufmann I, Hauer D, Morukov B, Schelling G, Chouker A (2012) Effects of parabolic flight and spaceflight on the endocannabinoid system in humans. Rev Neurosci 23:673–680PubMedCrossRefPubMedCentralGoogle Scholar
  94. Tauber S, Lauber BA, Paulsen K, Layer LE, Lehmann M, Hauschild S, Shepherd NR, Polzer J, Segerer J, Thiel CS, Ullrich O (2017) Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity. PLoS One 12:e0175599PubMedPubMedCentralCrossRefGoogle Scholar
  95. Taylor GR, Janney RP (1992) In vivo testing confirms a blunting of the human cell-mediated immune mechanism during space flight. J Leukoc Biol 51:129–132PubMedCrossRefPubMedCentralGoogle Scholar
  96. Taylor PW, Sommer AP (2005) Towards rational treatment of bacterial infections during extended space travel. Int J Antimicrob Agents 26:183–187PubMedPubMedCentralCrossRefGoogle Scholar
  97. Turek FW, Vitaterna MH, Jiang P, Keshavarzian A, Green SJ (2017) Metagenomic sequencing of the bacteriome in GI tract of twin astronauts on ground and on one-year ISS mission. In: Space life & physical sciences research & applications division task book. https://taskbook.nasaprs.com/Publication/index.cfm?action=public_query_taskbook_content&TASKID=11124Google Scholar
  98. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 105:20858–20863PubMedPubMedCentralCrossRefGoogle Scholar
  99. Vega FM, Ridley AJ (2008) Rho GTPases in cancer cell biology. FEBS Lett 582:2093–2101PubMedCrossRefPubMedCentralGoogle Scholar
  100. Voorhies AA, Mehta SK, Crucian BE, Torralba M, Moncera K, Feiveson A, Zurek-Varela EE, Pierson DL, Ott CM, Lorenzi HA (2017) Study of the impact of long-term space travel on the astronaut’s microbiome. In: Space life & physical sciences research & applications division task book. https://taskbook.nasaprs.com/Publication/index.cfm?action=public_query_taskbook_content&TASKID=11370Google Scholar
  101. Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, Petras RE, Shen B, Schaeffeler E, Schwab M, Linzmeier R, Feathers RW, Chu H, Lima H Jr, Fellermann K, Ganz T, Stange EF, Bevins CL (2005) Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A 102:18129–18134PubMedCentralCrossRefGoogle Scholar
  102. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583PubMedPubMedCentralCrossRefGoogle Scholar
  103. Wilson JW, Ott CM, Honer zu Bentrup K, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, Hunt A, Fernandez D, Richter E, Shah M, Kilcoyne M, Joshi L, Nelman-Gonzalez M, Hing S, Parra M, Dumars P, Norwood K, Bober R, Devich J, Ruggles A, Goulart C, Rupert M, Stodieck L, Stafford P, Catella L, Schurr MJ, Buchanan K, Morici L, McCracken J, Allen P, Baker-Coleman C, Hammond T, Vogel J, Nelson R, Pierson DL, Stefanyshyn-Piper HM, Nickerson CA (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci U S A 104:16299–16304PubMedPubMedCentralCrossRefGoogle Scholar
  104. Wilson JW, Ott CM, Quick L, Davis R, Honer zu Bentrup K, Crabbe A, Richter E, Sarker S, Barrila J, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, Hunt A, Shah M, Nelman-Gonzalez M, Hing S, Parra M, Dumars P, Norwood K, Bober R, Devich J, Ruggles A, CdeBaca A, Narayan S, Benjamin J, Goulart C, Rupert M, Catella L, Schurr MJ, Buchanan K, Morici L, McCracken J, Porter MD, Pierson DL, Smith SM, Mergeay M, Leys N, Stefanyshyn-Piper HM, Gorie D, Nickerson CA (2008) Media ion composition controls regulatory and virulence response of Salmonella in spaceflight. PLoS One 3:e3923PubMedPubMedCentralCrossRefGoogle Scholar
  105. Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 1773:642–652PubMedCrossRefPubMedCentralGoogle Scholar
  106. Yi B, Rykova M, Jager G, Feuerecker M, Horl M, Matzel S, Ponomarev S, Vassilieva G, Nichiporuk I, Chouker A (2015) Influences of large sets of environmental exposures on immune responses in healthy adult men. Sci Rep 5:13367PubMedCentralCrossRefGoogle Scholar
  107. Zea L, Prasad N, Levy SE, Stodieck L, Jones A, Shrestha S, Klaus D (2016) A molecular genetic basis explaining altered bacterial behavior in space. PLoS One 11:e0164359PubMedPubMedCentralCrossRefGoogle Scholar
  108. Zea L, Larsen M, Estante F, Qvortrup K, Moeller R, Dias de Oliveira S, Stodieck L, Klaus D (2017) Phenotypic changes exhibited by E. coli cultured in space. Front Microbiol 8:1598PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Infectious DiseasesThe J. Craig Venter InstituteRockvilleUSA

Personalised recommendations