Advertisement

Analytical Approaches to the Quantitative Evaluation of Endocannabinoids and Glucocorticoids as Stress Markers: Growing Evidence for Hair Testing

  • Detlef ThiemeEmail author
  • Patricia Anielski
  • Ann-Kathrin Helfers
  • Aniko Krumbholz
Chapter

Abstract

Space is a stressful environment, and any analytical evaluation of biochemical stress markers needs to account for numerous confounding factors which may significantly affect its interpretation. Appropriate biochemical markers need to be defined to reflect the relevant stress kinetics, e.g. acute vs. chronic mechanisms to cope external influences. These markers—or corresponding diagnostic biotransformation products—need to be sufficiently stable in the relevant timeframe of stress adaptation and differ significantly from basal values. Another critical parameter is the selection of suitable biological matrices which reflects stress-related variations of its markers in a diagnostic way and permits retrospective diagnostics. This includes systemic challenges, because collection of matrix from the biochemically most insightful target location—which is mainly the brain—is only conceivable in animal experiments. Blood represents the most suitable and logical compromise between diagnostic value and practical feasibility (i.e. low-invasiveness) of sample collection. However, hair samples start to serve for certain parameters as very reliable biospecimens. Because of the growth rate they may not allow high time resolution of days or hours, but permit an integration of stress responses over several weeks and months, as a retrospective calendar of stress. Any other common specimen is affected by additional biotransformation reactions (in particular urine) and by substance-specific incorporation or excretion mechanisms and lacks specificity and sensitivity.

References

  1. Abbassi-Ghanavati M, Greer LG, Cunningham FG (2009) Obstet Gynecol 114:1326CrossRefGoogle Scholar
  2. Amendola L, Garribb F, Botrè F (2003) Anal Chim Acta 489:233CrossRefGoogle Scholar
  3. Bastin P, Maiter D, Gruson D (2018) Ann Biol Clin (Paris)Google Scholar
  4. Biemann K, Oro J, Toulmin P 3rd, Orgel LE, Nier AO, Anderson DM, Simmonds PG, Flory D, Diaz AV, Rushneck DR, Biller JA (1976) Science 194:72CrossRefGoogle Scholar
  5. Chouker A, Kaufmann I, Kreth S, Hauer D, Feuerecker M, Thieme D, Vogeser M, Thiel M, Schelling G (2010) PLoS One 5:e10752CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cooper G (2015) In: Kintz P, Salomone A, Vincenti M (eds) Hair Analysis. Elsevier, Amsterdam, p 1Google Scholar
  7. Dlugos A, Childs E, Stuhr KL, Hillard CJ, de Wit H (2012) Neuropsychopharmacology 37:2416CrossRefPubMedPubMedCentralGoogle Scholar
  8. Duvivier WF, van Putten MR, van Beek TA, Nielen MW (2016) Anal Chem 88:2489CrossRefGoogle Scholar
  9. El-Farhan N, Pickett A, Ducroq D, Bailey C, Mitchem K, Morgan N, Armston A, Jones L, Evans C, Rees DA (2013) Clin Endocrinol 78:673CrossRefGoogle Scholar
  10. Evans-Nguyen T, Becker L, Doroshenko V, Cotter RJ (2008) Int J Mass Spectrom 278:170CrossRefGoogle Scholar
  11. Finn DP (2009) Immunobiology 215:629CrossRefGoogle Scholar
  12. Griebel G, Stemmelin J, Lopez-Grancha M, Fauchey V, Slowinski F, Pichat P, Dargazanli G, Abouabdellah A, Cohen C, Bergis OE (2018) Sci Rep 8:2416CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hauer D, Schelling G, Gola H, Campolongo P, Morath J, Roozendaal B, Hamuni G, Karabatsiakis A, Atsak P, Vogeser M, Kolassa IT (2014) PLoS One 8:e62741CrossRefGoogle Scholar
  14. Hengevoss J, Piechotta M, Muller D, Hanft F, Parr MK, Schanzer W, Diel P (2015) J Steroid Biochem Mol Biol 150:86CrossRefGoogle Scholar
  15. Hill MN, McLaughlin RJ, Bingham B, Shrestha L, Lee TT, Gray JM, Hillard CJ, Gorzalka BB, Viau V (2010) Proc Natl Acad Sci U S A 107:9406CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hillard CJ (2014) Semin Immunol 26:380CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hillard CJ, Weinlander KM, Stuhr KL (2011) Neuroscience 204:207CrossRefPubMedPubMedCentralGoogle Scholar
  18. Inder WJ, Dimeski G, Russell A (2012) Clin Endocrinol 77:645CrossRefGoogle Scholar
  19. Jiang HX, Ke BW, Liu J, Ma G, Hai KR, Gong DY, Yang Z, Zhou C (2018) Anesth AnalgGoogle Scholar
  20. Krumbholz A, Anielski P, Reisch N, Schelling G, Thieme D (2013) Ther Drug Monit 35:600PubMedGoogle Scholar
  21. Krumbholz A, Schonfelder M, Hofmann H, Thieme D (2018) Forensic Sci Int 286:23CrossRefGoogle Scholar
  22. Lam PM, Marczylo TH, El-Talatini M, Finney M, Nallendran V, Taylor AH, Konje JC (2008) Anal Biochem 380:195CrossRefGoogle Scholar
  23. Lam PM, Marczylo TH, Konje JC (2010) Anal Bioanal Chem 398:2089CrossRefGoogle Scholar
  24. Long JZ, Nomura DK, Cravatt BF (2009) Chem Biol 16:744CrossRefPubMedPubMedCentralGoogle Scholar
  25. Moore C, Rana S, Coulter C (2007) J Chromatogr B Analyt Technol Biomed Life Sci 852:459CrossRefGoogle Scholar
  26. Musshoff F, Arrey T, Strupat K (2013) Drug Test Anal (5):361Google Scholar
  27. Obata T, Sakurai Y, Kase Y, Tanifuji Y, Horiguchi T (2003) J Chromatogr B Analyt Technol Biomed Life Sci 792:131CrossRefGoogle Scholar
  28. Ottria R, Ravelli A, Gigli F, Ciuffreda P (2014) J Chromatogr B Analyt Technol Biomed Life Sci 958:83CrossRefGoogle Scholar
  29. Ozalp A, Barroso B (2009) Anal Biochem 395:68CrossRefGoogle Scholar
  30. Perogamvros I, Owen LJ, Keevil BG, Brabant G, Trainer PJ (2009) Clin Endocrinol 72:17CrossRefGoogle Scholar
  31. Pötsch L, Skopp G (2004) In: Madea B, Mußhoff F (eds) Haaranalytik. Deutscher Ärzte-Verlag GmbH, Köln, p 29Google Scholar
  32. Ratano P, Petrella C, Forti F, Passeri PP, Morena M, Palmery M, Trezza V, Severini C, Campolongo P (2018) Neuropharmacology 138:210CrossRefGoogle Scholar
  33. Sharkey KA, Wiley JW (2016) Gastroenterology 151:252CrossRefPubMedPubMedCentralGoogle Scholar
  34. Thieme D, Sachs H (2007) Forensic Sci Int 166:110CrossRefGoogle Scholar
  35. Thieme U, Schelling G, Hauer D, Greif R, Dame T, Laubender RP, Bernhard W, Thieme D, Campolongo P, Theiler L (2014) Drug Test Anal 6:17CrossRefGoogle Scholar
  36. Valenti M, Vigano D, Casico MG, Rubino T, Steardo L, Parolaro D, Di Marzo V (2004) Cell Mol Life Sci 61:945CrossRefGoogle Scholar
  37. Vandevoorde S, Saha B, Mahadevan A, Razdan RK, Pertwee RG, Martin BR, Fowler CJ (2005) Biochem Biophys Res Commun 337:104CrossRefGoogle Scholar
  38. Vogeser M, Schelling G (2007) Clin Chem Lab Med 45:1023PubMedGoogle Scholar
  39. Vogeser M, Hauer D, Azad SC, Huber E, Storr M, Schelling G (2006) Clin Chem Lab Med 44:488PubMedGoogle Scholar
  40. Zhang MY, Gao Y, Btesh J, Kagan N, Kerns E, Samad TA, Chanda PK (2009) J Mass Spectrom 45:167CrossRefGoogle Scholar
  41. Zhang Q, Chen Z, Chen S, Xu Y, Deng H (2016) Steroids 118:61CrossRefGoogle Scholar
  42. Zoerner AA, Gutzki FM, Suchy MT, Beckmann B, Engeli S, Jordan J, Tsikas D (2009) J Chromatogr B Analyt Technol Biomed Life Sci 877:2909CrossRefGoogle Scholar
  43. Zoerner AA, Batkai S, Suchy MT, Gutzki FM, Engeli S, Jordan J, Tsikas D (2011) J Chromatogr B Analyt Technol Biomed Life Sci 883-884:161CrossRefGoogle Scholar
  44. Zoerner AA, Gutzki FM, Batkai S, May M, Rakers C, Engeli S, Jordan J, Tsikas D (2018) Biochim Biophys Acta 1811:706CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Detlef Thieme
    • 1
    Email author
  • Patricia Anielski
    • 1
  • Ann-Kathrin Helfers
    • 1
  • Aniko Krumbholz
    • 1
  1. 1.Institut für Dopinganalytik und Sportbiochemie (IDAS)KreischaGermany

Personalised recommendations