Advertisement

Monitoring the Microbial Burden in Manned Space Stations

  • Rob Van HoudtEmail author
  • Natalie Leys
Chapter

Abstract

An impaired immunity generally weakens the host defense against microbial challenges and increases the vulnerability to infection. Especially in space, the consequences of an impaired immune system can further aggravate as astronauts, spending 100% of their time enclosed, face multiple stressors in an artificial environment with its own microbial population and dynamics. In this chapter, the knowledge of the environmental microbial burden in manned space stations and, in particular, the International Space Station ISS will be reviewed in terms of level and diversity. The implemented quality standards and monitoring strategies will be discussed in relation to the microbial burden and its impact on the crew’s well-being and ship safety. The consequences of impaired immunity to cope adequately with microbial contamination will increase the risk of infections in general and thereby endanger mission success. Microbial environmental quality and hazard control is therefore crucial to assure crew health. This might become even more important (1) when supplies from Earth are very restricted (cis-lunar stations or moon habitats) or almost impossible while on a mission to Mars and (2) since the interactions between the microbial environment, the human microbiome, and immune functions are receiving more attention and becoming more evidence-based.

Notes

Acknowledgments

This work was supported by the European Space Agency through the projects COMICS and EXANAM (together with the Belgian Science Policy), BIOSIS and BIOMODEXO, and by FP7 through the BIOSMHARS project.

References

  1. Alvarez B, Lopez MM, Biosca EG (2008) Survival strategies and pathogenicity of Ralstonia solanacearum phylotype II subjected to prolonged starvation in environmental water microcosms. Microbiology 154(Pt 11):3590–3598CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aviles H, Belay T, Fountain K, Vance M, Sonnenfeld G (2003) Increased susceptibility to Pseudomonas aeruginosa infection under hindlimb-unloading conditions. J Appl Physiol 95(1):73–80CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bechy-Loizeau AL, Flandrois JP, Abaibou H (2015) Assessment of polycarbonate filter in a molecular analytical system for the microbiological quality monitoring of recycled waters onboard ISS. Life Sci Space Res (Amst) 6:29–35CrossRefGoogle Scholar
  4. Berry CA (1973) View of human problems to be addressed for long-duration space flights. Aerosp Med 44(10):1136–1146PubMedPubMedCentralGoogle Scholar
  5. Berry D, Xi C, Raskin L (2006) Microbial ecology of drinking water distribution systems. Curr Opin Biotechnol 17(3):297–302CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F (2011) Resistance of bacterial biofilms to disinfectants: a review. Biofouling 27(9):1017–1032CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brief RS, Bernath T (1988) Indoor pollution: guidelines for prevention and control of microbiological respiratory hazards associated with air conditioning and ventilation system. Appl Ind Hyg 3(1):5–10CrossRefGoogle Scholar
  8. Bruce RJ, Ott CM, Skuratov VM, Pierson DL (2005) Microbial surveillance of potable water sources of the international Space Station. SAE Trans 114(1):283–292Google Scholar
  9. Castro VA, Thrasher AN, Healy M, Ott CM, Pierson DL (2004) Microbial characterization during the early habitation of the international Space Station. Microb Ecol 47(2):119–126CrossRefPubMedPubMedCentralGoogle Scholar
  10. Checinska A, Probst AJ, Vaishampayan P, White JR, Kumar D, Stepanov VG, Fox GE, Nilsson HR, Pierson DL, Perry J, Venkateswaran K (2015) Microbiomes of the dust particles collected from the international Space Station and spacecraft assembly facilities. Microbiome 3(1):50CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cox CS (1995) Stability of airborne microbes and allergens. In: Cox CS, Wathes CM (eds) Bioaerosols handbook. CRC Press, Boca Rotan, Florida, pp 77–99Google Scholar
  12. Dacarro C, Picco AM, Grisoli P, Rodolfi M (2003) Determination of aerial microbiological contamination in scholastic sports environments. J Appl Microbiol 95(5):904–912CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dawson DJ, Sartory DP (2000) Microbiological safety of water. Br Med Bull 56(1):74–83CrossRefPubMedPubMedCentralGoogle Scholar
  14. Duncan JM, Bogomolov VV, Castrucci F, Koike Y, Comtois JM, Sargsyan AE (2008) Organization and management of the international Space Station (ISS) multilateral medical operations. Acta Astronaut 63(7–10):1137–1147CrossRefGoogle Scholar
  15. Emtiazi F, Schwartz T, Marten SM, Krolla-Sidenstein P, Obst U (2004) Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration. Water Res 38(5):1197–1206CrossRefPubMedPubMedCentralGoogle Scholar
  16. Husman T (1996) Health effects of indoor-air microorganisms. Scand J Work Environ Health 22(1):5–13CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ichijo T, Yamaguchi N, Tanigaki F, Shirakawa M, Nasu M (2016) Four-year bacterial monitoring in the international Space Station-Japanese experiment module "Kibo" with culture-independent approach. NPJ Microgravity 2:16007CrossRefPubMedPubMedCentralGoogle Scholar
  18. ISS MORD (2006) SSP 50260 Revision C: ISS medical operations requirement document. HoustonGoogle Scholar
  19. James JT, Parmet AJ, Pierson DL (2008) Aerospace toxicology and microbiology. In: Davis JR, Johnson R, Stepanek J, Fogarty JA (eds) Fundamentals of aerospace medicine, 4th edn. Lippincott, Williams & Wilkins, Philadelphia, pp 236–250Google Scholar
  20. Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Medigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 5(5):e10433CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kemp PC, Neumeister-Kemp HG (2005) Australian mould guideline: AMG-2005-1. Myco Logia Australia Pty LtdGoogle Scholar
  22. Knox BP, Blachowicz A, Palmer JM, Romsdahl J, Huttenlocher A, Wang CC, Keller NP, Venkateswaran K (2016) Characterization of Aspergillus fumigatus isolates from air and surfaces of the international space station. mSphere 1(5):e00227–e00216CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lachance PA (1997) How HACCP started. Food Technol 51:35Google Scholar
  24. McAlister MB, Kulakov LA, O'Hanlon JF, Larkin MJ, Ogden KL (2002) Survival and nutritional requirements of three bacteria isolated from ultrapure water. J Ind Microbiol Biotechnol 29(2):75–82CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mehta SK, Pierson DL, Cooley H, Dubow R, Lugg D (2000) Epstein-Barr virus reactivation associated with diminished cell-mediated immunity in antarctic expeditioners. J Med Virol 61(2):235–240CrossRefGoogle Scholar
  26. Mijnendonckx K, Provoost A, Ott CM, Venkateswaran K, Mahillon J, Leys N, Van Houdt R (2013) Characterization of the survival ability of Cupriavidus metallidurans and Ralstonia pickettii from space-related environments. Microb Ecol 65(2):347–360CrossRefPubMedPubMedCentralGoogle Scholar
  27. Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189(20):7417–7425CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mora M, Perras A, Alekhova TA, Wink L, Krause R, Aleksandrova A, Novozhilova T, Moissl-Eichinger C (2016) Resilient microorganisms in dust samples of the international Space Station-survival of the adaptation specialists. Microbiome 4(1):65CrossRefPubMedPubMedCentralGoogle Scholar
  29. Morawska L (2006) Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air 16(5):335–347CrossRefPubMedPubMedCentralGoogle Scholar
  30. Morris HC, Damon M, Maule J, Monaco LA, Wainwright N (2012) Rapid culture-independent microbial analysis aboard the international space station (ISS) stage two: quantifying three microbial biomarkers. Astrobiology 12(9):830–840CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mulvey D, Redding P, Robertson C, Woodall C, Kingsmore P, Bedwell D, Dancer SJ (2011) Finding a benchmark for monitoring hospital cleanliness. J Hosp Infect 77(1):25–30CrossRefPubMedPubMedCentralGoogle Scholar
  32. NASA (2005a) International Space Station bacteria filter element service life evaluation. HoustonGoogle Scholar
  33. NASA (2005b) MR050L, Microbial analysis of ISS surfaces Using the surface sampler kit (SSK). HoustonGoogle Scholar
  34. NASA (2005c) MR051L, Microbial analysis of ISS water using the water microbiology kit (WMK) and the microbiology water analysis kit. HoustonGoogle Scholar
  35. NASA (2005d) MR052L, Microbial analysis of ISS Air using the microbial air sampler (MAS). HoustonGoogle Scholar
  36. NASA (2006) SD-T-0251, Microbiological specification and testing procedure for foods which are not commercially sterile, HoustonGoogle Scholar
  37. Novikova ND (2004) Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microb Ecol 47(2):127–132CrossRefPubMedPubMedCentralGoogle Scholar
  38. Novikova N, De Boever P, Poddubko S, Deshevaya E, Polikarpov N, Rakova N, Coninx I, Mergeay M (2006) Survey of environmental biocontamination on board the international Space Station. Res Microbiol 157(1):5–12CrossRefPubMedPubMedCentralGoogle Scholar
  39. Osman S, La Duc MT, Dekas A, Newcombe D, Venkateswaran K (2008) Microbial burden and diversity of commercial airline cabin air during short and long durations of travel. ISME J 2(5):482–497CrossRefPubMedPubMedCentralGoogle Scholar
  40. Perchonok M, Douglas G (2008) Risk factor of an inadequate food system. In: Human research evidence book. National Aeronautics and Space Administration, HoustonGoogle Scholar
  41. Pierson DL, Botkin DJ, Bruce RJ, Castro VA, Smith MJ, Oubre CM, Ott CM (2012) Microbial monitoring of the international Space Station. In: Moldenhauer J (ed) Environmental monitoring: a comprehensive handbook, vol 6. PDA, BethesdaGoogle Scholar
  42. Salmela A, Kokkonen E, Kulmala I, Veijalainen A-M, Van Houdt R, Leys N, Berthier A, Ilyin V, Kharin S, Morozova J, Tikhomirov A, Pasanen P (2018) Production and characterization of bioaerosols for model validation in spacecraft environment. J Environ Sci 69:227–238CrossRefGoogle Scholar
  43. Satoh K, Nishiyama Y, Yamazaki T, Sugita T, Tsukii Y, Takatori K, Benno Y, Makimura K (2011) Microbe-I: fungal biota analyses of the Japanese experimental module KIBO of the international Space Station before launch and after being in orbit for about 460 days. Microbiol Immunol 55(12):823–829CrossRefPubMedPubMedCentralGoogle Scholar
  44. Schwendner P, Mahnert A, Koskinen K, Moissl-Eichinger C, Barczyk S, Wirth R, Berg G, Rettberg P (2017) Preparing for the crewed Mars journey: microbiota dynamics in the confined Mars500 habitat during simulated Mars flight and landing. Microbiome 5(1):129CrossRefPubMedPubMedCentralGoogle Scholar
  45. Sessa R, Di PM, Schiavoni G, Santino I, Altieri A, Pinelli S, Del PM (2002) Microbiological indoor air quality in healthy buildings. New Microbiol 25(1):51–56PubMedPubMedCentralGoogle Scholar
  46. Stewart PS, Rayner J, Roe F, Rees WM (2001) Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates. J Appl Microbiol 91(3):525–532CrossRefPubMedPubMedCentralGoogle Scholar
  47. Straub JE, Plumlee DK, Schultz JR (2009) Chemical analysis results for potable water returned from ISS expeditions 14 and 15. SAE Int J Aerosp 1(1):556–577CrossRefGoogle Scholar
  48. Szewzyk U, Szewzyk R, Manz W, Schleifer KH (2000) Microbiological safety of drinking water. Annu Rev Microbiol 54:81–127CrossRefPubMedPubMedCentralGoogle Scholar
  49. Van Houdt R, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109:1117–1131CrossRefPubMedPubMedCentralGoogle Scholar
  50. Van Houdt R, De Boever P, Coninx I, Le Calvez C, Dicasillati R, Mahillon J, Mergeay M, Leys N (2009a) Evaluation of the airborne bacterial population in the periodically confined Antarctic base Concordia. Microb Ecol 57(4):640–648CrossRefPubMedPubMedCentralGoogle Scholar
  51. Van Houdt R, Monchy S, Leys N, Mergeay M (2009b) New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Antonie Van Leeuwenhoek 96(2):205–226CrossRefPubMedPubMedCentralGoogle Scholar
  52. Van Houdt R, Mijnendonckx K, Leys N (2012) Microbial contamination monitoring and control during human space missions. Planet Space Sci 60(1):115–120CrossRefGoogle Scholar
  53. Venkateswaran K, Vaishampayan P, Cisneros J, Pierson DL, Rogers SO, Perry J (2014) International Space Station environmental microbiome - microbial inventories of ISS filter debris. Appl Microbiol Biotechnol 98(14):6453–6466CrossRefPubMedPubMedCentralGoogle Scholar
  54. Verhoeff A (1993) Biological particles in indoor environments. In: European collaborative action, indoor air quality and its impact on man, COST Project 613, Report N. 12, EUR 14988 EN1993. LuxembourgGoogle Scholar
  55. Volodina E, Nagolkin A, Fedotov A (2003) Air cleaning device for destruction of microbes based on electroporation effect. In: Wirtanen G, Salo S (eds) 34th R3-Nordic contamination control symposium, Turku, Finland. pp. 199–204Google Scholar
  56. WHO (2008) World Health Organization: Guidelines for drinking-water quality: incorporating 1st and 2nd addenda, vol 1, Recommendations. 3rd edn. GenevaGoogle Scholar
  57. Wingender J, Flemming HC (2004) Contamination potential of drinking water distribution network biofilms. Water Sci Technol 49(11–12):277–286CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yamaguchi N, Roberts M, Castro S, Oubre C, Makimura K, Leys N, Grohmann E, Sugita T, Ichijo T, Nasu M (2014) Microbial monitoring of crewed habitats in space—current status and future perspectives. Microbes Environ 29(3):250–260CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Microbiology Unit, Interdisciplinary BiosciencesBelgian Nuclear Research Centre (SCK•CEN)MolBelgium

Personalised recommendations