Skip to main content

Breath Gas Analysis

  • Chapter
  • First Online:
Stress Challenges and Immunity in Space

Abstract

Exhaled air analyses are an attractive and emerging technology. It is a noninvasive and easy-to-handle method and may especially be suitable for health monitoring under conditions with limited access to standard diagnostic equipment i.e. for extended space missions. Based on the current knowledge together with ongoing and future clinical and space-related—earthbound and on the ISS—research, air analyses might become a suitable tool to monitor the adaption of various physiological systems (immune, organs, metabolism) to the stressful condition in space, thereby helping to assess overall health status as well to establish the diagnosis of diseases. As the concentration of volatile organic and inorganic components in exhaled breath is usually found in the low parts per billion of volume range highly sensitive diagnostic platforms are a prerequisite. These requirements are now met by recent technical improvements leading to an increase in the sensitivity of direct mass spectrometric and gas chromatographic methods. Particular interest is focused to direct mass spectrometric methods as they allow breath-by-breath analyses without evaluation delays. Recent developments in metal oxide sensor technology have awoke the interest in this technology above all due to low energy consumption and maintenance requirements. Furthermore, the recent discoveries of close relationships between specific compounds present in exhaled breath and physiological changes feeds the hope of developing possible noninvasive diagnostic and monitoring tools to diagnose immune dysfunctional states, infections, and cancer. With these recent progresses the technical cornerstone for exhaled breath gas analyses during space missions has been realized. Current research projects focus on the evaluation of exhaled breath gas compound standard values and the impact of stressors in space akin weightlessness, confinement, nutritional changes, hypoxia, and radiation exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amann A, Spanel P, Smith D (2007) Breath analysis: the approach towards clinical applications. Mini Rev Med Chem 7:115–129

    Article  CAS  PubMed  Google Scholar 

  • Bond JH, Levitt MD (1976) Quantitative measurement of lactose absorption. Gastroenterology 70:1058–1062

    Article  CAS  PubMed  Google Scholar 

  • Braden B (2009) Methods and functions: breath tests. Best Pract Res Clin Gastroenterol 23:337–352

    Article  CAS  PubMed  Google Scholar 

  • Buszewski B, Kesy M, Ligor T et al (2007) Human exhaled air analytics: biomarkers of diseases. Biomed Chromatogr 21:553–566

    Article  CAS  PubMed  Google Scholar 

  • Buszewski B, Ulanowska A, Ligor T et al (2009) Analysis of exhaled breath from smokers, passive smokers and non-smokers by solid-phase microextraction gas chromatography/mass spectrometry. Biomed Chromatogr 23:551–556

    Article  CAS  PubMed  Google Scholar 

  • Choukèr A, Kaufmann I, Dolch M et al (2007) Stress responses during parabolic flight maneuvers are reflected by changes in expiratory air. In: (Iabr) SMOTIaOBR (ed) Breath analysis summit 2007: clinical applications of breath testings, Cleveland, 1–3 Nov 2007

    Google Scholar 

  • Christl SU, Murgatroyd PR, Gibson GR et al (1992) Production, metabolism, and excretion of hydrogen in the large intestine. Gastroenterology 102:1269–1277

    Article  CAS  PubMed  Google Scholar 

  • Davies S, Spanel P, Smith D (1997) Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int 52:223–228

    Article  CAS  PubMed  Google Scholar 

  • De Lacy Costello B, Amann A, Al-Kateb H et al (2014) A review of the volatiles from the healthy human body. J Breath Res 8(1):014001

    Article  CAS  PubMed  Google Scholar 

  • Dolch M, Frey L, Hornuss C et al (2008) Molecular breath-gas analysis by online mass spectrometry in mechanically ventilated patients: a new software-based method of CO2-controlled alveolar gas monitoring. J Breath Res 2(3):037010

    Article  CAS  PubMed  Google Scholar 

  • Dolch ME, Choukèr A, Hornuss C et al (2015) Quantification ofpropionaldehydeinbreathofpatientsafter lung transplantation. Free Radic Biol Med 85:157–164

    Article  CAS  PubMed  Google Scholar 

  • Dolch ME, Hummel T, Fetter V et al (2017) Electronic nose functionality for breath gas analysis during parabolic flight. Microgravity Sci Technol 29:201–207

    Article  CAS  Google Scholar 

  • Endre ZH, Pickering JW, Storer MK et al (2011) Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy. Physiol Meas 32:115–130

    Article  CAS  PubMed  Google Scholar 

  • Gelmont D, Stein RA, Mead JF (1981) Isoprene-the main hydrocarbon in human breath. Biochem Biophys Res Commun 99:1456–1460

    Article  CAS  PubMed  Google Scholar 

  • Graham DY, Klein PD, Evans DJ Jr et al (1987) Campylobacter pylori detected noninvasively by the 13C-urea breath test. Lancet 1:1174–1177

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Wang C, Chi C et al (2015) Exhaled breath volatile biomarker analysis for thyroid cancer. Transl Res 166:188–195

    Article  CAS  PubMed  Google Scholar 

  • Hornuss C, Praun S, Villinger J et al (2007) Real-time monitoring of propofol in expired air in humans undergoing total intravenous anesthesia. Anesthesiology 106:665–674

    Article  CAS  PubMed  Google Scholar 

  • Karl T, Prazeller P, Mayr D et al (2001) Human breath isoprene and its relation to blood cholesterol levels: new measurements and modeling. J Appl Physiol 91:762–770

    Article  CAS  PubMed  Google Scholar 

  • Karlsson LL, Kerckx Y, Gustafsson LE et al (2009) Microgravity decreases and hypergravity increases exhaled nitric oxide. J Appl Physiol 107:1431–1437

    Article  CAS  PubMed  Google Scholar 

  • Kazui M, Andreoni KA, Williams GM et al (1994) Visceral lipid peroxidation occurs at reperfusion after supraceliac aortic cross-clamping. J Vasc Surg 19:473–477

    Article  CAS  PubMed  Google Scholar 

  • Kövesi TS, Royston D, Yacoub MH et al (2003) Exhaled nitric oxide in human lung ischemia-reperfusion. In: Marczin N, Kharitonov SA, Yacoub MH et al (eds) Disease markers in exhaled breath. Marcel Dekker, Inc, New York/Basel

    Google Scholar 

  • Kramer A, Below H, Bieber N et al (2007) Quantity of ethanol absorption after excessive hand disinfection using three commercially available hand rubs is minimal and below toxic levels for humans. BMC Infect Dis 7:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis JM, Savage RS, Beeching NJ et al (2017) Identifying volatile metabolite signatures for the diagnosis of bacterial respiratory tract infection using electronic nose technology: a pilot study. PLoS One 12:e0188879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Xu G, Wang C et al (2009) Breath pentane: an indicator for early and continuous monitoring of lipid peroxidation in hepatic ischaemia-reperfusion injury. Eur J Anaesthesiol 26:513–519

    Article  CAS  PubMed  Google Scholar 

  • Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom Ion Process 173:191–241

    Article  CAS  Google Scholar 

  • Markar SR, Brodie B, Chin ST et al (2018) Profile of exhaled-breath volatile organic compounds to diagnose pancreatic cancer. Br J Surg 105:1493–1500

    Article  CAS  PubMed  Google Scholar 

  • Miekisch W, Schubert JK, Noeldge-Schomburg GFE (2004) Diagnostic potential of breath analysis - focus on volatile organic compounds. Clin Chim Acta 347:25–39

    Article  CAS  PubMed  Google Scholar 

  • Modak AS (2007) Stable isotope breath tests in clinical medicine: a review. J Breath Res 1:014003

    Article  PubMed  Google Scholar 

  • Moeskops BW, Steeghs MM, Van Swam K et al (2006) Real-time trace gas sensing of ethylene, propanal and acetaldehyde from human skin in vivo. Physiol Meas 27:1187–1196

    Article  CAS  PubMed  Google Scholar 

  • Pauling L, Robinson AB, Teranish R et al (1971) Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci U S A 68:2374–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedrosa M, Cancelliere N, Barranco P et al (2010) Usefulness of exhaled nitric oxide for diagnosing asthma. J Asthma 47:817–821

    Article  CAS  PubMed  Google Scholar 

  • Phillips M, Boehmer JP, Cataneo RN et al (2004) Heart allograft rejection: detection with breath alkanes in low levels (the HARDBALL study). J Heart Lung Transplant 23:701–708

    Article  PubMed  Google Scholar 

  • Phillips M, Bauer TL, Cataneo RN et al (2015) Blinded validation of breath biomarkers of lung cancer, a potential ancillary to chest CT screening. PLoS One 10:e0142484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips M, Cataneo RN, Cruz-Ramos JA et al (2018) Prediction of breast cancer risk with volatile biomarkers in breath. Breast Cancer Res Treat 170:343–350

    Article  CAS  PubMed  Google Scholar 

  • Pinggera GM, Lirk P, Bodogri F et al (2005) Urinary acetonitrile concentrations correlate with recent smoking behaviour. BJU Int 95:306–309

    Article  CAS  PubMed  Google Scholar 

  • Reidt U, Helwig A, Müller G et al (2017) Detection of microorganisms onboard the international Space Station using an electronic nose. Gravit Space Res 5:89–111

    Google Scholar 

  • Risby TH (2005) Current status of clinical breath analysis. In: Amann A, Smith D (eds) Breath analysis for clinical diagnosis and therapeutic monitoring. World Scientific Publishing, Singapore

    Google Scholar 

  • Risby TH, Sehnert SS (1999) Clinical application of breath biomarkers of oxidative stress status. Free Radic Biol Med 27:1182–1192

    Article  CAS  PubMed  Google Scholar 

  • Roccarina D, Lauritano EC, Gabrielli M et al (2010) The role of methane in intestinal diseases. Am J Gastroenterol 105:1250–1256

    Article  PubMed  Google Scholar 

  • Romagnuolo J, Schiller D, Bailey RJ (2002) Using breath tests wisely in a gastroenterology practice: an evidence-based review of indications and pitfalls in interpretation. Am J Gastroenterol 97:1113–1126

    Article  PubMed  Google Scholar 

  • Schmoelz M, Praun S, Schmoeckel M et al (2007) Online measurement of acetone in expiratory air by mass spectrometry during cardiac surgery. In: Annual meeting of the American Society of Anesthesiologists, San Francisco, 16 Oct, A1426

    Google Scholar 

  • Scholpp J, Schubert JK, Miekisch W et al (2002) Breath markers and soluble lipid peroxidation markers in critically ill patients. Clin Chem Lab Med 40:587–594

    Article  CAS  PubMed  Google Scholar 

  • Schubert JK, Müller WPE, Benzing A et al (1998) Application of a new method for analysis of exhaled gas in critically ill patients. Intensive Care Med 24:415–421

    Article  CAS  PubMed  Google Scholar 

  • Schubert JK, Miekisch W, Birken T et al (2005) Impact of inspired substance concentrations on the results of breath analysis in mechanically ventilated patients. Biomarkers 10:138–152

    Article  CAS  PubMed  Google Scholar 

  • Smith D, Wang T, Spanel P (2002) On-line, simultaneous quantification of ethanol, some metabolites and water vapour in breath following the ingestion of alcohol. Physiol Meas 23:477–489

    Article  PubMed  Google Scholar 

  • Smolinska A, Tedjo DI, Blanchet L et al (2018) Volatile metabolites in breath strongly correlate with gut microbiome in CD patients. Anal Chim Acta 1025:1–11

    Article  CAS  PubMed  Google Scholar 

  • Steeghs MM, Moeskops BW, Van Swam K et al (2006) On-line monitoring of UV-induced lipid peroxidation products, from human skin in vivo using proton-transfer reaction mass spectrometry. Int J Mass Spectrom 253:58–64

    Google Scholar 

  • Stenseth R, Nilsen T, Haaverstad R et al (2007) Frequent sampling allows detection of short and rapid surges of exhaled ethane during cardiac surgery. Perfusion 22:391–396

    Article  CAS  PubMed  Google Scholar 

  • Szulejko JE, Mcculloch M, Jackson J et al (2010) Evidence for cancer biomarkers in exhaled breath. IEEE Sensors J 10:25

    Article  CAS  Google Scholar 

  • Turner S (2007) The role of exhaled nitric oxide in the diagnosis, management and treatment of asthma. Mini Rev Med Chem 7:539–542

    CAS  PubMed  Google Scholar 

  • Turner C, Spanel P, Smith D (2006a) A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. Physiol Meas 27:321–337

    Article  PubMed  Google Scholar 

  • Turner C, Spanel P, Smith D (2006b) A longitudinal study of breath isoprene in healthy volunteers using selected ion flow tube mass spectrometry (SIFT-MS). Physiol Meas 27:13–22

    Article  PubMed  Google Scholar 

  • Van Den Velde S, Nevens F, Van Hee P et al (2008) GC-MS analysis of breath odor compounds in liver patients. J Chromatogr B Analyt Technol Biomed Life Sci 875:344–348

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Sun B, Guo L et al (2014) Volatile organic metabolites identify patients with breast cancer, cyclomastopathy, and mammary gland fibroma. Sci Rep 4:5383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported in part by the Department of Anaesthesiology of the University of Munich, the European Space Agency, the National Aeronautics and Space Administration (NASA), the Institute for Biomedical Problems (IBMP), the French and Italian Polar institutes (IPEV, PNRA), the German Space and Aeronautics Centre (DLR) & and the German Federal Ministry of Economics and Technology (50WB0523, 50WB0719, 50WB0919, 50WB1317), and the Kompetenzzentrum Medizin in Tirol, project 09A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Dolch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dolch, M., Praun, S., Villiger, J., Choukér, A., Schelling, G. (2020). Breath Gas Analysis. In: Choukèr, A. (eds) Stress Challenges and Immunity in Space. Springer, Cham. https://doi.org/10.1007/978-3-030-16996-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16996-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16995-4

  • Online ISBN: 978-3-030-16996-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics