Advertisement

Monitoring of Autonomic Activity by Cardiovascular Variability: How to Measure?

  • André E. AubertEmail author
  • Bart Verheyden
Chapter

Abstract

Cardiovascular variability in heart rate and blood pressure can be used to quantify the autonomic modulation of cardiovascular function in space and on Earth. Although the first studies were only published some 40 years ago, there is presently a vast amount of knowledge from numerous publications (a PubMed search gives 23,179 hits) that allows a better insight into the neural control mechanisms of the heart. The development of methods to measure cardiovascular variability prompted a multidisciplinary approach since many aspects are involved: mathematics, physics, signal processing, physiology, and cardiology. The current chapter briefly outlines the physiological background and the fundamental methodology used in the field of neurocardiology such as data recording, analysis in time domain, in frequency domain, and nonlinear dynamics. Finally some applications and benefits of these methods in health and disease monitoring are discussed.

References

  1. Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ (1981) Power spectrum analysis of heart-rate fluctuation–a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222PubMedCrossRefPubMedCentralGoogle Scholar
  2. Arbeille P, Provost R, Vincent N, Aubert AE (2014) Adaptation of the main peripheral artery and vein to long term confinement (Mars 500). PLoS One 9(1):e83063.  https://doi.org/10.1371/journal.poneCrossRefPubMedPubMedCentralGoogle Scholar
  3. Aubert AE, Ramaekers D (1999) Neurocardiology: the benefits of irregularity - the basics of methodology, physiology and current clinical applications. Acta Cardiol 54:107–120PubMedPubMedCentralGoogle Scholar
  4. Aubert AE, Ramaekers D, Beckers F, Breem R, Denef C, Van de Werf F, Ector H (1999) The analysis of heart rate variability in unrestrained rats. Validation of method and results. Comput Methods Prog Biomed 60:197–213CrossRefGoogle Scholar
  5. Aubert AE, Seps B, Beckers F (2003) Heart rate variability in athletes. Sports Med 33:889–919PubMedCrossRefPubMedCentralGoogle Scholar
  6. Aubert AE, Beckers F, Verheyden B (2005) Cardiovascular function and basics of physiology in microgravity. Acta Cardiol 60(2):129–151PubMedCrossRefPubMedCentralGoogle Scholar
  7. Aubert AE, Vandeput S, Beckers F, Liu J, Verheyden B, Van Huffel S (2009) Complexity of cardiovascular regulation in small animals. Philos Transact A Math Phys Eng Sci 367:1239–1250CrossRefGoogle Scholar
  8. Aubert AE, Verheyden B, D’Ydewalle C, Beckers F, Van den Bergh O (2010) Effects of mental stress on autonomic cardiac modulation during weightlessness. Am J Physiol Heart Circ Physiol 298:H202–H209PubMedCrossRefGoogle Scholar
  9. Aubert AE, Larina I, Momken I, Blanc S, White O, Prisk K, Linnarsson D (2016) Towards human exploration of space: the theseaus review on cardiovascular, respiratory and renal research. NPJ Microgravity 2:16031.  https://doi.org/10.1038/npjmgrav.2016.31CrossRefPubMedPubMedCentralGoogle Scholar
  10. Baevsky RM, Petrov VM, Cornelissen G, Halberg F, Orth-Gomer K, Akerstedt T, Otsuka K, Breus T, Siegelova J, Dusek J, Fiser B (1997) Meta-analyzed heart rate variability, exposure to geomagnetic storms, and the risk of ischemic heart disease. Scr Med (Brno) 70:201–206Google Scholar
  11. Baevsky RM, Petrov VM, Chernikova AG (1998) Regulation of autonomic nervous system in space and magnetic storms. Adv Space Res 22:227–234PubMedCrossRefPubMedCentralGoogle Scholar
  12. Baevsky RM, Baranov VM, Funtova II, Diedrich A, Pashenko AV, Chernikova AG, Drescher J, Jordan J, Tank J (2007) Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the international Space Station. J Appl Physiol 103:156–161PubMedCrossRefPubMedCentralGoogle Scholar
  13. Baselli G, Bolis D, Cerutti S, Freschi C (1985) Autoregressive modeling and power spectral estimate of R-R interval time series in arrhythmic patients. Comput Biomed Res 18:510–530PubMedCrossRefPubMedCentralGoogle Scholar
  14. Beckers F (2002) Linear and nonlinear analysis of cardiovascular variability. In: Validation and clinical applications (Acta Biomedica Lovaniensis). Leuven University Press, Leuven, pp 1–133. ISBN 90 5867 249 2Google Scholar
  15. Beckers F, Verheyden B, Aubert AE (2003a) Evolution of heart rate varibility before, during and after spaceflight. J Gravit Physiol 10:107–108Google Scholar
  16. Beckers F, Seps B, Ramaekers D, Verheyden B, Aubert AE (2003b) Parasympathetic heart rate modulation during parabolic flights. Eur J Appl Physiol 90:83–91PubMedCrossRefPubMedCentralGoogle Scholar
  17. Beckers F, Verheyden B, De Winne F, Duque P, Chaput D, Aubert AE (2004) HICOPS: human interface computer program in space. J Clin Monit Comput 18(2):131–136PubMedCrossRefPubMedCentralGoogle Scholar
  18. Beckers F, Verheyden B, Aubert AE (2006a) Aging and nonlinear heart rate control in a healthy population. Am J Physiol Heart Circ Physiol 290:H2560–H2570PubMedCrossRefPubMedCentralGoogle Scholar
  19. Beckers F, Verheyden B, Couckuyt K, Aubert AE (2006b) Fractal dimension in health and heart failure. Biomed Tech 51:194–197CrossRefGoogle Scholar
  20. Beckers F, Verheyden B, Couckuyt K, Liu J, Aubert AE (2006c) Autonomic cardiovascular modulation after spaceflight during orthostatic stress. Eur Heart J 27:190–190Google Scholar
  21. Beckers F, Verheyden B, Ramaekers D, Swynghedauw B, Aubert AE (2006d) Effects of autonomic blockade on non-linear cardiovascular variability indices in rats. Clin Exp Pharmacol Physiol 33:431–439PubMedCrossRefGoogle Scholar
  22. Beckers F, Verheyden B, Liu J, Aubert AE (2009) Cardiovascular autonomic control after short-duration spceflights. Acta Astronaut 65:804–812CrossRefGoogle Scholar
  23. Bendat JS, Piersol AG (1971) Random data: analysis and measurement procedures. Wiley Interscience, New York. ISBN 0 471 0470 XGoogle Scholar
  24. Benichou T, Pereira B, Mermillod M, Tauveron I, Pfabigan D, Maqdasy S, Dutheil F (2018) Heart rate variability in type 2 diabetes mellitus: A systematic review and meta-analysis. PLoS One 13:4CrossRefGoogle Scholar
  25. Bogaert C, Beckers F, Ramaekers D, Aubert AE (2001) Analysis of heart rate variability with correlation dimension method in a normal population and in heart transplant patients. Auton Neurosci 90:142–147PubMedCrossRefGoogle Scholar
  26. Chan HL, Huang HH, Lin JL (2001) Time-frequency analysis of heart rate variability during transient segments. Ann Biomed Eng 29:983–996PubMedCrossRefGoogle Scholar
  27. Cohen MA, Taylor JA (2002) Short-term cardiovascular oscillations in man: measuring and modelling the physiologies. J Physiol 542:669–683PubMedPubMedCentralCrossRefGoogle Scholar
  28. Copie X, Le Heuzey JY, Iliou MC, Khouri R, Lavergne T, Pousset F, Guize L (1996) Correlation between time-domain measures of heart rate variability and scatterplots in postinfarction patients. Pacing Clin Electrophysiol 19:342–347PubMedCrossRefGoogle Scholar
  29. Dabire H, Mestivier D, Jarnet J, Safar ME, Chau NP (1998) Quantification of sympathetic and parasympathetic tones by nonlinear indexes in normotensive rats. Am J Physiol Heart Circ Physiol 44:H1290–H1297CrossRefGoogle Scholar
  30. Donaldson K, Duffin R, Langrish JP, Miller MR, Mills NL, Poland CA, Raftis J, Shah A, Shaw CA, Newby DE (2013) Nanoparticles and the cardiovascular system: a critical review. Nanomedicine (Lond) 8(3):403–423.  https://doi.org/10.2217/nnm.13.16. ReviewCrossRefGoogle Scholar
  31. Eckberg DL (1997) Sympathovagal balance - a critical appraisal. Circulation 96:3224–3232PubMedCrossRefGoogle Scholar
  32. Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D 9:189–208CrossRefGoogle Scholar
  33. Guyton AC, Hall JE, Lohmeier TE, Jackson TE, Kastner PR (1981) Blood pressure regulation: basic concepts. Fed Proc 40:2252–2256PubMedGoogle Scholar
  34. Holland A, Aboy M (2009) A novel recursive Fourier transform for nonuniform sampled signals: application to heart rate variability spectrum estimation. Med Biol Eng Comput 47(7):697–707PubMedCrossRefPubMedCentralGoogle Scholar
  35. Huikuri HV, Perkiömäki JS, Maestri R, Pinna GD (2009) Clinical impact of evaluation of cardiovascular control by novel methods of heart rate dynamics. Philos Trans A Math Phys Eng Sci 367:1223–1238PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hyndman BW (1974) The role of rhythms in homeostasis. Kybernetik 15:227–236PubMedGoogle Scholar
  37. Hyndman BW, Kitney RI, Sayers BM (1971) Spontaneous rhythms in physiological control systems. Nature 233:339–341PubMedCrossRefPubMedCentralGoogle Scholar
  38. Imholz BPM, Wieling W, van Montfrans GA, Wesseling KH (1998) Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res 38:605–616PubMedCrossRefPubMedCentralGoogle Scholar
  39. Kleiger R, Miller J, Bigger JT Jr, Moss A (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:266–262CrossRefGoogle Scholar
  40. Kleiger RE, Bigger JT, Bosner MS, Chung MK, Cook JR, Rolnitzky LM, Steinman R, Fleiss JL (1991) Stability over time of variables measuring heart rate variability in normal subjects. Am J Cardiol 68:626–630PubMedCrossRefPubMedCentralGoogle Scholar
  41. Kochiadakis GE, Orfanakis AE, Rombola AT, Chrysostomakis SI, Chlouverakis GI, Vardas PE (1997) Reproducibility of time-domain indexes of heart rate variability in patients with vasovagal syncope. Am J Cardiol 79:160–165PubMedCrossRefPubMedCentralGoogle Scholar
  42. Lees T, Shad-Kaneez F, Simpson AM, Nassif NT, Lin Y, Lal S (2018) Heart rate variability as a biomarker for predicting stroke, post-stroke complications and functionality. Biomark Insights 13:1177271918786931PubMedPubMedCentralCrossRefGoogle Scholar
  43. Liu J, Li Y, Verheyden B, Liu X, Chen Z, Chen S, Aubert AE (2009) Cardiovascular control during 60 days head-down bed rest: Chinese herbal medicine as a countermeasure. Space Med Med Eng 22:391–398Google Scholar
  44. Liu J, Verheyden B, Beckers F, Aubert AE (2012) Hemodynamic adaptation during sudden gravity transitions. Eur J Appl Physiol 117:79–89CrossRefGoogle Scholar
  45. Liu J, Li Y, Verheyden B, Chen S, Chen Z, Gai Y, Liu J, Gao J, Xi Q, Yuan M, Lin Q, Aubert AE (2015) Is autonomic modulation different between European and Chinese astronauts? PLoS One 10(3):e0120920. DOI:10.13PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lombardi F (2000) Chaos theory, heart rate variability, and arrhythmic mortality. Circulation 101:8–10PubMedCrossRefPubMedCentralGoogle Scholar
  47. Malik M, Camm AJ (1995) Heart rate variability. Futura Publ Co, Armonk, pp 1–543. ISBN 0 87993 607 XGoogle Scholar
  48. Malliani A (2000) Principles for cardiovascular neural regulation in health and disease. Kluwer Academic Publishers, Boston, pp 1–222. ISBN 0-7923-7775-3CrossRefGoogle Scholar
  49. Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency-domain. Circulation 84:482–492CrossRefGoogle Scholar
  50. Mansier P, Clairambault J, Charlotte N, Medigue C, Vermeiren C, LePape G, Carre F, Gounaropoulou A, Swynghedauw B (1996) Linear and non-linear analyses of heart rate variability: a mini review. Cardiovasc Res 31:371–379PubMedCrossRefPubMedCentralGoogle Scholar
  51. Manzey D (2004) Human missions to Mars: new psychological challenges and research issues. Acta Astronaut 55(3–9):781–790CrossRefGoogle Scholar
  52. McIntosh RC (2016) A meta-analysis of HIV and heart rate variability in the era of antiretroviral therapy. Clin Auton Res 26(4):287–294CrossRefGoogle Scholar
  53. Miwa C, Sugiyama Y, Mano T, Iwase S, Matsukawa T (1997) Sympatho-vagal responses in humans to thermoneutral head-out water immersion. Aviat Space Environ Med 68:1109–1114PubMedPubMedCentralGoogle Scholar
  54. Novak V, Novak P, Dechamplain J, Leblanc AR, Martin R, Nadeau R (1993) Influence of respiration on heart-rate and blood-pressure fluctuations. J Appl Physiol 74:617–626PubMedCrossRefPubMedCentralGoogle Scholar
  55. Pavy-Le TA, Heer M, Narici MV, Rittweger J, Vernikos J (2007) From space to earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 101:143–194CrossRefGoogle Scholar
  56. Pinna GD, Maestri R, Di CA, Colombo R, Minuco G (1994) The accuracy of power-spectrum analysis of heart-rate variability from annotated RR lists generated by Holter systems. Physiol Meas 15:163–179PubMedCrossRefPubMedCentralGoogle Scholar
  57. Pinna GD, Maestri R, Di CA (1996) Application of time series spectral analysis theory: analysis of cardiovascular variability signals. Med Biol Eng Comput 34:142–148PubMedCrossRefPubMedCentralGoogle Scholar
  58. Raab C, Wessel N, Schirdewan A, Kurths J (2006) Large-scale dimension densities for heart rate variability analysis. Phys Rev E Stat Nonlinear Soft Matter Phys 73(4 Pt 1):041907. Epub 2006 Apr 10CrossRefGoogle Scholar
  59. Ramaekers D, Ector H, Aubert AE, Rubens A, Van de Werf F (1998) Heart rate variability and heart rate in healthy volunteers - is the female autonomic nervous system cardioprotective? Eur Heart J 19:1334–1341PubMedCrossRefGoogle Scholar
  60. Ramaekers D, Beckers F, Demeulemeester H, Aubert AE (2002) Cardiovascular autonomic function in conscious rats: a novel approach to facilitate stationary conditions. Ann Noninvasive Electrocardiol 7:307–318PubMedCrossRefGoogle Scholar
  61. Sayers BM (1973) Analysis of heart rate variability. Ergonomics 16:17–32PubMedCrossRefGoogle Scholar
  62. Shie Q, Dapang C (1996) Joint time-frequency analysis. Prentice Hall, Upper Saddle River. ISBN 0 13 254384 2Google Scholar
  63. da Silva TD, Massetti T, Crocetta TB, de Mello Monteiro CB, Carll A, Vanderlei LCM, Arbaugh C, Oliveira FR, de Abreu LC, Ferreira Filho C, Godleski J, Ferreira C (2018) Heart rate variability and cardiopulmonary dysfunction in patients with duchenne muscular dystrophy: a systematic review. Pediatr Cardiol 39(5):869–883PubMedCrossRefGoogle Scholar
  64. Task force (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17:354–381CrossRefGoogle Scholar
  65. Toska K, Eriksen M (1993) Respiration-synchronous fluctuations in stroke volume, heart rate and arterial pressure in humans. J Physiol 472:501–512PubMedPubMedCentralCrossRefGoogle Scholar
  66. Umetani K, Singer DH, McCraty R, Atkinson M (1998) Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol 31:593–601PubMedPubMedCentralCrossRefGoogle Scholar
  67. Verheyden B (2007) Cardiovascular control in space and on earth: the challenge of gravity (Acta Biomedica Lovaniensia). Leuven University Press, Leuven, pp 1–152. ISBN 978 90 5867 618 4Google Scholar
  68. Verheyden B, Beckers F, Aubert AE (2005) Spectral characteristics of heart rate fluctuations during parabolic flight. Eur J Appl Physiol 95:557–568PubMedCrossRefPubMedCentralGoogle Scholar
  69. Verheyden B, Beckers F, Couckuyt K, Liu J, Aubert AE (2007) Respiratory modulation of cardiovascular rhythms before and after short-duration human spaceflight. Acta Physiol (Oxf) 191:297–308CrossRefGoogle Scholar
  70. Verheyden B, Liu J, Beckers F, Aubert AE (2009) Adaptation of heart rate and blood pressure to short and long duration space missions. Respir Physiol Neurobiol 169S:S13–S19CrossRefGoogle Scholar
  71. Verheyden B, Liu J, Beckers F, Aubert AE (2010) Operational point of neural cardiovascular regulation in humans up to 6 months in space. J Appl Physiol 108:646–654PubMedCrossRefGoogle Scholar
  72. Verlinde D, Beckers F, Ramaekers D, Aubert AE (2001) Wavelet decomposition analysis of heart rate variability in aerobic athletes. Auton Neurosci 90(1–2):138–141PubMedCrossRefGoogle Scholar
  73. Vigo D, Tuerlinckx F, Ogrinz B, Li W, Simonelli G, Bersenev E, Van den Bergh O, Aubert AE (2013) Circadian rhythm of autonomic cardiovascular control during Mars500 simulated mission to Mars. Aviat Space Environ Med 84(10):1023–1028PubMedCrossRefPubMedCentralGoogle Scholar
  74. Yamamoto Y, Hughson RL (1991) Coarse-graining spectral-analysis – new method for studying heart-rate-variability. J Appl Physiol 71:1143–1150PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Laboratory of Experimental CardiologyUniv. Hospital GasthuisbergLeuvenBelgium

Personalised recommendations