Advertisement

Cellular and Molecular Responses to Gravitational Force-Triggered Stress in Cells of the Immune System

  • Oliver UllrichEmail author
  • Cora S. Thiel
Chapter

Abstract

Sensitivity of the human immune system to microgravity has been supposed since the first Apollo missions and was demonstrated during several space missions in the past. In vitro experiments demonstrated that cells of the immune system are exceptionally sensitive to microgravity. Therefore, serious concerns arose whether spaceflight-associated immune system weakening ultimately precludes the expansion of human presence beyond Earth’s orbit. In human cells, gravitational forces may be sensed by an individual cell in the context of altered extracellular matrix mechanics, cell shape, cytoskeletal organization, or internal prestress in the cell–tissue matrix. The development of cellular mechanosensitivity and signal transduction was probably an evolutionary requirement to enable our cells to sense their individual microenvironment. Therefore it is possible that the same mechanisms, which enable human cells to sense and to cope with mechanical stress, are potentially dangerous in microgravity. This chapter reviews the most recent developments in investigation to elucidate the influence of microgravity on immune cell signaling and functions and hereby bridges the phenotypic changes to transcriptome and epigenetic regulators.

Notes

Acknowledgments

We gratefully acknowledge the support by the German Aerospace Center (DLR), Space Agency (grant no. 50WB0613, no. 50WB0912, no. 50WB1219, no. 50WB1519), and ESA (ESTEC Contract nr 20562/07/NL/VJ ESA-CORA-GBF-2005-005). We also gratefully thank our collaboration partners DLR, ESA, NASA, Spaceflorida, Airbus Defense and Space, Novespace, the Swiss Air Force, the Swiss International Airlines, and the Deutsche Lufthansa.

References

  1. Adrian A, Schoppmann K, Sromicki J et al (2013) The oxidative burst reaction in mammalian cells depends on gravity. Cell Commun Signal 11:98CrossRefPubMedPubMedCentralGoogle Scholar
  2. Albrecht-Buehler G (1991) Possible mechanisms of indirect gravity sensing by cells. ASGSB Bull 4:25–34PubMedGoogle Scholar
  3. Armstrong JW, Gerren RA, Chapes SK (1995) The effect of space and parabolic flight on macrophage hematopoiesis and function. Exp Cell Res 216(1):160–168CrossRefGoogle Scholar
  4. Athirasala A, Hirsch N, Buxboim A (2017) Nuclear mechanotransduction: sensing the force from within. Curr Opin Cell Biol 46:119–127CrossRefGoogle Scholar
  5. Bakos A, Varkonyi A, Minarovits J, Batkai L (2001) Effect of simulated microgravity on human lymphocytes. J Gravit Physiol 8:69–70Google Scholar
  6. Barlow PW (1995) Gravity perception in plants: a multiplicity of systems derived by evolution? Plant Cell Environ 18:951–962CrossRefGoogle Scholar
  7. Barritt G, Rychkov G (2005) TRPs as mechanosensitive channels. Nat Cell Biol 7:105–107CrossRefGoogle Scholar
  8. Battista N, Meloni MA, Bari M et al (2012) 5-Lipoxygenase-dependent apoptosis of human lymphocytes in the International Space Station: data from the ROALD experiment. FASEB J 26:1791–1798CrossRefGoogle Scholar
  9. Belaadi N, Aureille J, Guilluy C (2016) Under pressure: mechanical stress management in the nucleus. Cell 5:27CrossRefGoogle Scholar
  10. Bershadsky A, Kozlov M, Geiger B (2006) Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 18:472–481CrossRefGoogle Scholar
  11. Boonyaratanakornkit JB, Cogoli A, Li CF et al (2005) Key gravity-sensitive signaling pathways drive T cell activation. FASEB J 19:2020–2022CrossRefPubMedPubMedCentralGoogle Scholar
  12. Braeucker R, Cogoli A, Hemmersbach R (2002) Graviperception and graviresponse at the cellular level. In: Horneck G, Baumstark-Khan C (eds) Astrobiology the quest for the conditions of life. Springer, Berlin, pp 287–333Google Scholar
  13. Brown AH (1991) From gravity and the organism to gravity and the cell. ASGSB Bull 4:7–18PubMedGoogle Scholar
  14. Brungs S, Kolanus W, Hemmersbach R (2015) Syk phosphorylation–a gravisensitive step in macrophage signalling. Cell Commun Signal 13:9CrossRefPubMedPubMedCentralGoogle Scholar
  15. Buravkova L, Romanov Y, Rykova M et al (2005) Cell-to-cell interactions in changed gravity: ground-based and flight experiments. Acta Astronaut 57:67–74CrossRefGoogle Scholar
  16. Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179CrossRefGoogle Scholar
  17. Callegari A (2016) Eukaryotic transcription factor binding kinetics - a single-molecule and functional study. Thesis. EPFL, Switzerland.  https://doi.org/10.5075/epfl-thesis-7267CrossRefGoogle Scholar
  18. Campellone KG, Welch MD (2010) A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol 11:237CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chan MW, Arora PD, Bozavikov P et al (2009) FAK, PIP5KIγ and gelsolin cooperatively mediate force-induced expression of α-smooth muscle actin. J Cell Sci 122:2769–2781CrossRefGoogle Scholar
  20. Chang TT, Walther I, Li CF et al (2012) The Rel/NF-κB pathway and transcription of immediate early genes in T cell activation are inhibited by microgravity. J Leukoc Biol 92:1133–1145CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chang W, Worman HJ, Gundersen GG (2015) Accessorizing and anchoring the LINC complex for multifunctionality. J Cell Biol 208:11–22CrossRefPubMedPubMedCentralGoogle Scholar
  22. Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88:39–48CrossRefGoogle Scholar
  23. Choukèr A, Ullrich O (2016) The immune system in space: are we prepared. Springer International Publishing, New York, pp 123–127CrossRefGoogle Scholar
  24. Coffey DS (1998) Self-organization, complexity and chaos: the new biology for medicine. Nat Med 4:882–885CrossRefGoogle Scholar
  25. Cogoli A (1993) The effect of hypogravity and hypergravity on cells of the immune system. J Leukoc Biol 54:259–268CrossRefGoogle Scholar
  26. Cogoli A (1996) Gravitational physiology of human immune cells: a review of in vivo, ex vivo and in vitro studies. J Gravit Physiol 3:1–9PubMedGoogle Scholar
  27. Cogoli A, Cogoli-Greuter M (1997) Activation and proliferation of lymphocytes and other mammalian cells in microgravity. Adv Space Biol Med 6:33–79CrossRefGoogle Scholar
  28. Cogoli A, Tschopp A, Fuchs-Bislin P (1984) Cell sensitivity to gravity. Science 225:228–230CrossRefGoogle Scholar
  29. Cogoli M, Bechler B, Cogoli A et al (1992) Lymphocytes on sounding rockets. Adv Space Res 12:141–144CrossRefGoogle Scholar
  30. Cogoli-Greuter M, Meloni MA, Sciola L et al (1996) Movements and interactions of leukocytes in microgravity. J Biotechnol 47:279–287CrossRefGoogle Scholar
  31. Cohrs RJ, Mehta SK, Schmid DS et al (2008) Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. J Med Virol 80:1116–1122CrossRefPubMedPubMedCentralGoogle Scholar
  32. Comet B (2001) Limiting factors for human health and performance: microgravity and reduced gravity. HUMEX-TN-002 Study on the survivability and adaptation of humans to long-duration interplanetary and planetary environments. Technical Note 2: Critical assessments of the limiting factors for human health and performance and recommendation of countermeasuresGoogle Scholar
  33. Cubano LA, Lewis ML (2000) Fas/APO-1 protein is increased in spaceflown lymphocytes (Jurkat). Exp Gerontol 35:389–400CrossRefGoogle Scholar
  34. Danko CG, Hah N, Luo X et al (2013) Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol Cell 50:212–222CrossRefPubMedPubMedCentralGoogle Scholar
  35. Darzacq X, Shav-Tal Y, De Turris V et al (2007) In vivo dynamics of RNA polymerase II transcription. Nat Struct Mol Biol 14:796–806CrossRefPubMedPubMedCentralGoogle Scholar
  36. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143CrossRefPubMedPubMedCentralGoogle Scholar
  37. Dreuillet C, Tillit J, Kress M et al (2002) In vivo and in vitro interaction between human transcription factor MOK2 and nuclear lamin A/C. Nucleic Acids Res 30:4634–4642CrossRefPubMedPubMedCentralGoogle Scholar
  38. Dupont S, Morsut L, Aragona M et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179CrossRefGoogle Scholar
  39. Eckes B, Dogic D, Colucci-Guyon E et al (1998) Impaired mechanical stability, migration and contractile capacity in vimen-tin-deficient fibroblasts. J Cell Sci 111:1897–1907PubMedGoogle Scholar
  40. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200CrossRefPubMedPubMedCentralGoogle Scholar
  41. Engler AJ, Sen S, Sweeney HL et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689CrossRefGoogle Scholar
  42. Fedorchak GR, Kaminski A, Lammerding J (2014) Cellular mechanosensing: getting to the nucleus of it all. Prog Biophys Mol Biol 115:76–92CrossRefPubMedPubMedCentralGoogle Scholar
  43. Feldner JC, Brandt BH (2002) Cancer cell motility–on the road from c-erbB-2 receptor steered signaling to actin reorganization. Exp Cell Res 272:93–108CrossRefGoogle Scholar
  44. Fenchel T, Finlay BJ (1986) The structure and function of Müller vesicles in loxodid ciliates. J Protozool 33:69–76CrossRefGoogle Scholar
  45. Frippiat JP, Crucian BE, De Quervain DJ et al (2016) Towards human exploration of space: the THESEUS review series on immunology research priorities. NPJ Microgravity 2:16040CrossRefPubMedPubMedCentralGoogle Scholar
  46. Fuller B (1961) Tensegrity. Portfolio Artnews Annu 4:112–127Google Scholar
  47. Furuike S, Ito T, Yamazaki M (2001) Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy. FEBS Lett 498:72–75CrossRefGoogle Scholar
  48. Galimberti M, Tolic-Norrelykke IM, Favillini R et al (2006) Hypergravity speeds up the development of T-lymphocyte motility. Eur Biophys J 35:393–400CrossRefGoogle Scholar
  49. Garrison SR, Dietrich A, Stucky CL (2012) TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons. J Neurophysiol 107:913–922CrossRefGoogle Scholar
  50. Gieni RS, Hendzel MJ (2009) Actin dynamics and functions in the interphase nucleus: moving toward an understanding of nuclear polymeric actin. Biochem Cell Biol 87:283–306CrossRefGoogle Scholar
  51. Goldermann M, Hanke W (2001) Ion channel are sensitive to gravity changes. Microgravity Sci Technol 13:35CrossRefGoogle Scholar
  52. Guéguinou N, Huin-Schohn C, Bascove M et al (2009) Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond earth’s orbit? J Leukoc Biol 86:1027–1038CrossRefGoogle Scholar
  53. Guelen L, Pagie L, Brasset E et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948CrossRefGoogle Scholar
  54. Häder DP, Hemmersbach R (1997) Graviperception and graviorientation in flagellates. Planta 203:7–10CrossRefGoogle Scholar
  55. Häder DP, Lebert M (2001) Graviperception and gravitaxis in algae. Adv Space Res 27:861–870CrossRefGoogle Scholar
  56. Häder DP, Richter PR, Strauch SM et al (2006) Aquacells – flagellates under long-term microgravity and potential usage for life support systems. Microgravit Sci Technol 18:210–214CrossRefGoogle Scholar
  57. Häder DP, Richter PR, Schuster M et al (2009) Molecular analysis of the graviperception signal transduction in the flagellate Euglena gracilis: involvement of a transient receptor potential-like channel and a calmodulin. Adv Space Res 43:1179–1184CrossRefGoogle Scholar
  58. Häder DP, Braun M, Grimm D et al (2017) Gravireceptors in eukaryotes—a comparison of case studies on the cellular level. NPJ Microgravity 3:13CrossRefPubMedPubMedCentralGoogle Scholar
  59. Haeder DP, Rosum A, Schaefer J et al (1996) Graviperception in the flagellate Euglena gracilis during a shuttle spaceflight. J Biotechnol 47:261–269CrossRefGoogle Scholar
  60. Haeder DP, Porst M, Tahedl H et al (1997) Gravitactic orientation in the flagellate Euglena gracilis. Microgravity Sci Technol 10:53–57Google Scholar
  61. Haeder DP, Hemmersbach R, Lebert M (2005) Gravity and the behaviour of unicellular organisms. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  62. Halder G, Dupont S, Piccolo S (2012) Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 13:591CrossRefGoogle Scholar
  63. Hashemi BB, Penkala JE, Vens C et al (1999) T cell activation responses are differentially regulated during clinorotation and in spaceflight. FASEB J 13:2071–2082CrossRefGoogle Scholar
  64. Hatton JP, Gaubert F, Cazenave JP et al (2002) Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells. J Cell Biochem 87:39–50CrossRefGoogle Scholar
  65. Haut Donahue TL, Genetos DC et al (2004) Annexin V disruption impairs mechanically induced calcium signaling in osteoblastic cells. Bone 35:656–663CrossRefGoogle Scholar
  66. Hawkins W, Zieglschmid J (1975) Clinical aspects of crew health. In: Johnston R, Dietlein L, Berry C (eds) Biomedical results of Apollo. NASA, Washington, DC, pp 43–81Google Scholar
  67. Hayden MS, Ghosh S (2008) Shared principles in NF-κB signaling. Cell 132:344–362CrossRefGoogle Scholar
  68. Hemmersbach R, Braeucker R (2002) Gravity-related behaviour in ciliates and flagellates. In: Cogoli A (ed) Cell biology and biotechnology in space, advances in space biology and medicine, vol 8. Elsevier, Amsterdam, pp 59–75CrossRefGoogle Scholar
  69. Hemmersbach R, Haeder DP (1999) Graviresponses of certain ciliates and flagellates. FASEB J 13:S69–S75CrossRefGoogle Scholar
  70. Hemmersbach R, Voormanns R, Briegleb W et al (1996) Influence of accelerations on the spatial orientation of Loxodes and Paramecium. J Biotechnol 47:271–278CrossRefGoogle Scholar
  71. Hemmersbach R, Voormanns R, Bromeis B et al (1998) Comparative studies of the graviresponses of Paramecium and Loxodes. Adv Space Res 21:1285–1289CrossRefGoogle Scholar
  72. Hemmersbach R, Volkmann D, Haeder DP (1999) Graviorientation in protists and plants. J Plant Physiol 154:1–15CrossRefGoogle Scholar
  73. Hemmersbach-Krause R, Briegleb W, Haeder DP et al (1993) Orientation of Paramecium under the conditions of microgravity. J Eukaryot Microbiol 40:439–446CrossRefGoogle Scholar
  74. Hetzer MW (2010) The nuclear envelope. Cold Spring Harb Perspect Biol 2:a000539CrossRefPubMedPubMedCentralGoogle Scholar
  75. Hoffman BD, Crocker JC (2009) Cell mechanics: dissecting the physical responses of cells to force. Annu Rev Biomed Eng 11:259–288CrossRefGoogle Scholar
  76. Hoffman BD, Massiera G, Crocker JC (2007) Fragility and mechanosensing in a thermalized cytoskeleton model with forced protein unfolding. Phys Rev E Stat Nonlinear Soft Matter Phys 76:051906CrossRefGoogle Scholar
  77. Hofman P, d’Andrea L, Guzman E et al (1999) Neutrophil F-actin and myosin but not microtubules functionally regulate transepithelial migration induced by interleukin 8 across a cultured intestinal epithelial monolayer. Eur Cytokine Netw 10:227–236PubMedGoogle Scholar
  78. Horwitz AR, Parsons JT (1999) Cell migration–movin’ on. Science 286:1102–1103CrossRefGoogle Scholar
  79. Hu S, Chen J, Butler JP et al (2005) Prestress mediates force propagation into the nucleus. Biochem Biophys Res Commun 329:423–428CrossRefGoogle Scholar
  80. Hubmayr RD, Shore SA, Fredberg JJ et al (1996) Pharmacological activation changes stiffness of cultured human airway smooth muscle cells. Am J Phys 271:C1660–C1668CrossRefGoogle Scholar
  81. Hughes-Fulford M (2003) Function of the cytoskeleton in gravisensing during spaceflight. Adv Space Res 32:1585–1593CrossRefGoogle Scholar
  82. Hughes-Fulford M, Chang T, Li CF (2008) Effect of gravity on monocyte differentiation. Paper presented at the 10th ESA Life Sciences Symposium/29th Annual ISGP Meeting/24th Annual ASGSB Meeting/ELGRA Symposium “Life in Space for Life on Earth”, 22–27 June 2008 Angers, FranceGoogle Scholar
  83. Hughes-Fulford M, Chang TT, Martinez EM et al (2015) Spaceflight alters expression of microRNA during T-cell activation. FASEB J 29(12):4893–4900CrossRefPubMedPubMedCentralGoogle Scholar
  84. Ihalainen TO, Aires L, Herzog FA et al (2015) Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nat Mater 14:1252CrossRefPubMedPubMedCentralGoogle Scholar
  85. Ingber DE (1993) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 104:613–627PubMedPubMedCentralGoogle Scholar
  86. Ingber DE (1998) The architecture of life. Sci Am 278:48–57CrossRefPubMedPubMedCentralGoogle Scholar
  87. Ingber DE (1999) How cells (might) sense microgravity. FASEB J 13:S3–S15CrossRefPubMedPubMedCentralGoogle Scholar
  88. Ingber DE (2003a) Mechanobiology and diseases of mechanotransduction. Ann Med 35:564–577CrossRefPubMedPubMedCentralGoogle Scholar
  89. Ingber DE (2003b) Tensegrity I: cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173CrossRefGoogle Scholar
  90. Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20:811–827CrossRefPubMedPubMedCentralGoogle Scholar
  91. Ingber DE (2008) Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 97:163–179CrossRefPubMedPubMedCentralGoogle Scholar
  92. Iskratsch T, Wolfenson H, Sheetz MP (2014) Appreciating force and shape—the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol 15:825CrossRefPubMedPubMedCentralGoogle Scholar
  93. Jiang G, Huang AH, Cai Y et al (2006) Rigidity sensing at the leading edge through avb3 integrins and RPTPa. Biophys J 90:1804–1809CrossRefPubMedPubMedCentralGoogle Scholar
  94. Karin M, Hunter T (1995) Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol 5:747–757CrossRefPubMedPubMedCentralGoogle Scholar
  95. Katsch K, De Jong SJ, Albrecht JC et al (2012) Actin-dependent activation of serum response factor in T cells by the viral oncoprotein tip. Cell Commun Signal 10:5CrossRefPubMedPubMedCentralGoogle Scholar
  96. Katta SS, Smoyer CJ, Jaspersen SL (2014) Destination: inner nuclear membrane. Trends Cell Biol 24:221–229CrossRefPubMedPubMedCentralGoogle Scholar
  97. Kaur I, Simons ER, Castro VA et al (2004) Changes in neutrophil functions in astronauts. Brain Behav Immun 18:443–450CrossRefPubMedPubMedCentralGoogle Scholar
  98. Kaur I, Simons ER, Castro VA et al (2005) Changes in monocyte functions of astronauts. Brain Behav Immun 19:547–554CrossRefPubMedPubMedCentralGoogle Scholar
  99. Kimzey SL (1977) Hematology and immunology studies. In: Johnson RS, Dietlein LF (eds) Biomedical results from Skylab, NASA SP-377. Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, DC, pp 249–282Google Scholar
  100. Klopp E, Graff D, Struckmeier J et al (2002) The osteoblast mechano-receptor, microgravity perception and thermodynamics. J Gravit Physiol 9:269–270Google Scholar
  101. Kole TP, Tseng Y, Huang L et al (2004) Rho kinase regulates the intracellular micromechanical response of adherent cells to rho activation. Mol Biol Cell 15:3475–3484CrossRefPubMedPubMedCentralGoogle Scholar
  102. Kondrachuk AV, Sirenko SP (1996) The theoretical consideration of microgravity effects on a cell. Adv Space Res 17:165–168CrossRefGoogle Scholar
  103. Konstantinova IV, Antropova YN, Legenkov VI et al (1973) Study of reactivity of blood lymphoid cells in crew members of the Soyuz-6, Soyuz-7 and Soyuz-8 spaceships before and after flight. Space Biol Med 7:48–55Google Scholar
  104. Kossmehl P, Shakibaei M, Cogoli A et al (2002) Simulated microgravity induces programmed cell death in human thyroid carcinoma cells. J Gravit Physiol 9:P295–P296PubMedGoogle Scholar
  105. Langenbach KJ, Sottile J (1999) Identification of protein-disulfide isomerase activity in fibronectin. J Biol Chem 274:7032–7038CrossRefGoogle Scholar
  106. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369CrossRefGoogle Scholar
  107. Le HQ, Ghatak S, Yeung CY et al (2016) Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat Cell Biol 18:864–875CrossRefPubMedPubMedCentralGoogle Scholar
  108. Lebert M, Haeder DP (1996) How Euglena tells up from down. Nature 379:590CrossRefGoogle Scholar
  109. Lebert M, Richter P, Haeder DP (1997) Signal perception and transduction of gravitaxis in the flagellate Euglena gracilis. J Plant Physiol 150:685–690CrossRefGoogle Scholar
  110. Lebert M, Porst M, Richter P et al (1999) Physical characterization of gravitaxis in Euglena gracilis. J Plant Physiol 155:338–343CrossRefGoogle Scholar
  111. Lee JS, Gotlieb AI (2002) Microtubule-actin interactions may regulate endothelial integrity and repair. Cardiovasc Pathol 11:135–140CrossRefGoogle Scholar
  112. LeMasurier M, Gillespie PG (2005) Hair-cell mechanotransduction and cochlear amplification. Neuron 48:403–415CrossRefGoogle Scholar
  113. Lewis ML (2004) The cytoskeleton in spaceflown cells: an overview. Gravit Space Biol 17:1–12Google Scholar
  114. Lewis ML, Reynolds JL, Cubano LA et al (1998) Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 12:1007–1018CrossRefGoogle Scholar
  115. Limouse M, Manié S, Konstantinova I et al (1991) Inhibition of phorbol ester-induced cell activation in microgravity. Exp Cell Res 197:82–86CrossRefGoogle Scholar
  116. Lombardi ML, Jaalouk DE, Shanahan CM et al (2011) The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J Biol Chem 286:26743–26753CrossRefPubMedPubMedCentralGoogle Scholar
  117. Machemer H, Machemer-Roehnisch S, Braeucker R et al (1991) Gravikinesis in Paramecium: theory and isolation of a physiological response to the natural gravity vector. J Comp Physiol A 168:1–12CrossRefGoogle Scholar
  118. Maiuri P, Knezevich A, De Marco A et al (2011) Fast transcription rates of RNA polymerase II in human cells. EMBO Rep 12:1280–1285CrossRefPubMedPubMedCentralGoogle Scholar
  119. Makhija E, Jokhun D, Shivashankar G (2016) Nuclear deformability and telomere dynamics are regulated by cell geometric constraints. Proc Natl Acad Sci U S A 113:E32–E40CrossRefPubMedPubMedCentralGoogle Scholar
  120. Mammoto A, Huang S, Moore K et al (2004) Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. J Biol Chem 279:26323–26330CrossRefGoogle Scholar
  121. Mammoto A, Huang S, Ingber DE (2007) Filamin links cell shape and cytoskeletal structure to Rho regulation by controlling accumulation of p190RhoGAP in lipid rafts. J Cell Sci 120:456–467CrossRefGoogle Scholar
  122. Mangala LS, Zhang Y, He Z et al (2011) Effects of simulated microgravity on expression profile of microRNA in human lymphoblastoid cells. J Biol Chem 286:32483–32490CrossRefPubMedPubMedCentralGoogle Scholar
  123. Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A 94:849–854CrossRefPubMedPubMedCentralGoogle Scholar
  124. Maroto R, Raso A, Wood TG et al (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185CrossRefGoogle Scholar
  125. Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117:2449–2460CrossRefGoogle Scholar
  126. Mazumder A, Roopa T, Basu A et al (2008) Dynamics of chromatin decondensation reveals the structural integrity of a mechanically prestressed nucleus. Biophys J 95:3028–3035CrossRefPubMedPubMedCentralGoogle Scholar
  127. Mehta SK, Cohrs RJ, Forghani B et al (2004) Stress-induced subclinical reactivation of varicella zoster virus in astronauts. J Med Virol 72:174–179CrossRefGoogle Scholar
  128. Meissner K, Hanke W (2005) Action potential properties are gravity dependent. Microgravity Sci Technol 17:38–43CrossRefGoogle Scholar
  129. Meloni MA, Galleri G, Pippia P et al (2006) Cytoskeleton changes and impaired motility of monocytes at modelled low gravity. Protoplasma 229:243–249CrossRefPubMedPubMedCentralGoogle Scholar
  130. Meloni MA, Galleri G, Pani G et al (2008) Effects of real microgravity aboard international space station on monocytes motility and interaction with T-lymphocytes. Paper presented at the 10th ESA Life Sciences Symposium/29th Annual ISGP Meeting/24th Annual ASGSB Meeting/ELGRA Symposium “Life in Space for Life on Earth”, 22–27 June 2008 Angers, FranceGoogle Scholar
  131. Miralles F, Posern G, Zaromytidou AI et al (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113:329–342CrossRefGoogle Scholar
  132. Miroshnikova YA, Nava MM, Wickström SA (2017) Emerging roles of mechanical forces in chromatin regulation. J Cell Sci 130:2243–2250CrossRefPubMedPubMedCentralGoogle Scholar
  133. Morita T, Mayanagi T, Sobue K (2007) Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs). Exp Cell Res 313:3432–3445CrossRefGoogle Scholar
  134. Mossman KD, Campi G, Groves JT et al (2005) Altered TCR signaling from geometrically repatterned immunological synapses. Science 310:1191–1193CrossRefGoogle Scholar
  135. Najrana T, Sanchez-Esteban J (2016) Mechanotransduction as an adaptation to gravity. Front Pediatr 4:140CrossRefPubMedPubMedCentralGoogle Scholar
  136. Nakamura H, Kumei Y, Morita S et al (2003) Antagonism between apoptotic (Bax/Bcl-2) and anti-apoptotic (IAP) signals in human osteoblastic cells under vector-averaged gravity condition. Ann N Y Acad Sci 1010:143–147CrossRefGoogle Scholar
  137. NASA (1967) Gemini Summary Conference. NASA-SP-138Google Scholar
  138. NASA (1968) Gemini midprogram conference including experiment results. NASA-SP-121, JSC-CN-29009Google Scholar
  139. Navarro AP, Collins MA, Folker ES (2016) The nucleus is a conserved mechanosensation and mechanoresponse organelle. Cytoskeleton 73:59–67CrossRefGoogle Scholar
  140. Niggli V (2003) Microtubule-disruption-induced and chemotactic-peptide-induced migration of human neutrophils: implications for differential sets of signalling pathways. J Cell Sci 116:813–822CrossRefGoogle Scholar
  141. Ohnishi T, Takahashi A, Wang X et al (1999) Accumulation of a tumor suppressor p53 protein in rat muscle during a space flight. Mutat Res 430:271–274CrossRefGoogle Scholar
  142. Ohta Y, Hartwig JH, Stossel TP (2006) FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling. Nat Cell Biol 8:803–814CrossRefGoogle Scholar
  143. Orr AW, Helmke BP, Blackman BR et al (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20CrossRefGoogle Scholar
  144. Otey CA, Carpen O (2004) Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton 58:104–111CrossRefGoogle Scholar
  145. Papaseit C, Pochon N, Tabony J (2000) Microtubule self-organization is gravity-dependent. Proc Natl Acad Sci U S A 97:8364–8368CrossRefPubMedPubMedCentralGoogle Scholar
  146. Paulsen K, Thiel C, Timm J et al (2010) Microgravity-induced alterations in signal transduction in cells of the immune system. Acta Astronaut 67(9–10):1116–1125CrossRefGoogle Scholar
  147. Paulsen K, Tauber S, Goelz N et al (2014) Severe disruption of the cytoskeleton and immunologically relevant surface molecules in a human macrophageal cell line in microgravity—results of an in vitro experiment on board of the Shenzhou-8 space mission. Acta Astronaut 94:277–292CrossRefGoogle Scholar
  148. Paulsen K, Tauber S, Dumrese C et al (2015) Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity. Biomed Res Int 2015:538786CrossRefGoogle Scholar
  149. Pellis NR, Goodwin TJ, Risin D et al (1997) Changes in gravity inhibit lymphocyte locomotion through type I collagen. In Vitro Cell Dev Biol Anim 33:398–405CrossRefGoogle Scholar
  150. Penard E (1917) Le genre Loxodes. Rev Suisse Zool 25:453–489Google Scholar
  151. Planel H (2004) Space and life: an introduction to space biology and medicine. CRC Press, Boca RatonCrossRefGoogle Scholar
  152. Planel H, Richoilley G, Tixador R et al (1981) Space flight effects on Paramecium tetraurelia flown aboard Salyut 6 in the Cytos 1 and Cytos M experiment. Adv Space Res 1:95–101CrossRefGoogle Scholar
  153. Planel H, Tixador R, Nefedov Y et al (1982) Effect of space flight factors at the cellular level: results of the CYTOS experiment. Aviat Space Environ Med 53:370–374PubMedGoogle Scholar
  154. Pletser V (2016) European aircraft parabolic flights for microgravity research, applications and exploration: a review. REACH-Rev Human Space Explor 1:11–19Google Scholar
  155. Plett PA, Abonour R, Frankovitz SM et al (2004) Impact of modeled microgravity on migration, differentiation, and cell cycle control of primitive human hematopoietic progenitor cells. Exp Hematol 32:773–781CrossRefGoogle Scholar
  156. Pollard EC (1965) Theoretical studies on living systems in the absence of mechanical stress. J Theor Biol 8:113–123CrossRefGoogle Scholar
  157. Pourati J, Maniotis A, Spiegel D et al (1998) Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Am J Phys 274:C1283–C1289CrossRefGoogle Scholar
  158. Ramdas NM, Shivashankar G (2015) Cytoskeletal control of nuclear morphology and chromatin organization. J Mol Biol 427:695–706CrossRefGoogle Scholar
  159. Rieder N (1977) Die Müllerschen Körperchen von Loxodes magnus (Ciliata, Holotricha): Ihr Bau und ihre mögliche Funktion als Schwererezeptor. In: Verhandlungen der Deutschen Zoologischen Gesellschaft, vol 70. Jahresversammlung, Erlangen, Gustav Fisher Verlag, Stuttgart, p 254Google Scholar
  160. Rief M, Pascual J, Saraste M et al (1999) Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol 286:553–561CrossRefGoogle Scholar
  161. Riveline D, Zamir E, Balaban NQ et al (2001) Focal contacts as mechanosensors externally applied local mechanical force induces growth of focal contacts by an mdia1-dependent and rock-independent mechanism. J Cell Biol 153:1175–1186CrossRefPubMedPubMedCentralGoogle Scholar
  162. Roesner H, Wassermann T, Moeller W et al (2006) Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells. Protoplasma 229:225–234CrossRefGoogle Scholar
  163. Romanov YA, Buravkova LB, Rikova MP et al (2001) Expression of cell adhesion molecules and lymphocyte-endothelium interaction under simulated hypogravity in vitro. J Gravit Physiol 8:5–8Google Scholar
  164. Sathe AR, Shivashankar G, Sheetz MP (2016) Nuclear transport of paxillin depends on focal adhesion dynamics and FAT domains. J Cell Sci 129:1981–1988CrossRefPubMedPubMedCentralGoogle Scholar
  165. Schatten H, Lewis ML, Chakrabarti A (2001) Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronaut 49:399–418CrossRefGoogle Scholar
  166. Schmitt DA, Hatton JP, Emond C et al (1996) The distribution of protein kinase C in human leukocytes is altered in microgravity. FASEB J 10:1627–1634CrossRefGoogle Scholar
  167. Schnepel J, Tschesche H (2000) The proteolytic activity of the recombinant cryptic human fibronectin type IV collagenase from E. coli expression. J Protein Chem 19:685–692CrossRefGoogle Scholar
  168. Schwarzenberg M, Pippia P, Meloni MA et al (1999) Signal transduction in T lymphocytes–a comparison of the data from space, the free fall machine and the random positioning machine. Adv Space Res 24:793–800CrossRefGoogle Scholar
  169. Schwer CI, Lehane C, Guelzow T et al (2013) Thiopental inhibits global protein synthesis by repression of eukaryotic elongation factor 2 and protects from hypoxic neuronal cell death. PLoS One 8:e77258CrossRefPubMedPubMedCentralGoogle Scholar
  170. Sciola L, Cogoli-Greuter M, Cogoli A et al (1999) Influence of microgravity on mitogen binding and cytoskeleton in Jurkat cells. Adv Space Res 24:801–805CrossRefPubMedPubMedCentralGoogle Scholar
  171. Sheetz MP (2001) Cell control by membrane–cytoskeleton adhesion. Nat Rev Mol Cell Biol 2:392–396CrossRefGoogle Scholar
  172. Shevelyov YY, Nurminsky DI (2012) The nuclear lamina as a gene-silencing hub. Curr Issues Mol Biol 14:27PubMedGoogle Scholar
  173. Shyy JY, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91:769–775CrossRefGoogle Scholar
  174. Singh KP, Kumari R, Dumond JW (2010) Simulated microgravity-induced epigenetic changes in human lymphocytes. J Cell Biochem 111(1):123–129CrossRefGoogle Scholar
  175. Solovei I, Wang AS, Thanisch K et al (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152:584–598CrossRefPubMedPubMedCentralGoogle Scholar
  176. Spisni E, Toni M, Strillacci A et al (2006) Caveolae and caveolae constituents in mechanosensing: effect of modeled microgravity on cultured human endothelial cells. Cell Biochem Biophys 46:155–164CrossRefPubMedPubMedCentralGoogle Scholar
  177. Stamenovic D, Mijailovich SM, Tolic-Norrelykke IM et al (2002) Cell prestress. II: Contribution of microtubules. Am J Physiol Cell Physiol 282:C617–C624CrossRefPubMedPubMedCentralGoogle Scholar
  178. Stossel TP, Condeelis J, Cooley L et al (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2:138–145CrossRefPubMedPubMedCentralGoogle Scholar
  179. Stowe RP, Sams CF, Mehta SK et al (1999) Leukocyte subsets and neutrophil function after short-term spaceflight. J Leukoc Biol 65:179–186CrossRefPubMedPubMedCentralGoogle Scholar
  180. Streb C, Richter P, Ntefidou M et al (2002) Sensory transduction of gravitaxis in Euglena gracilis. J Plant Physiol 159:855–862CrossRefGoogle Scholar
  181. Strohman RC (1997) The coming Kuhnian revolution in biology. Nat Biotechnol 15:194–200CrossRefPubMedPubMedCentralGoogle Scholar
  182. Studer M, Thiel C, Bradacs G et al (2010) Parabolic maneuvers of the Swiss Air Force fighter jet Northrop F5-E as a new platform to identify rapid gravi-responsive mechanisms in cultured mammalian cells. Paper presented at the 61st International Astronautical Congress, IAC-10. A1.7.9, 27 Sep–01 Oct 2010, Prague Czech RepublicGoogle Scholar
  183. Sundaresan A, Risin D, Pellis NR (2002) Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity. In Vitro Cell Dev Biol Anim 38:118–122CrossRefPubMedPubMedCentralGoogle Scholar
  184. Tabony J, Rigotti N, Glade N et al (2007) Effect of weightlessness on colloidal particle transport and segregation in self-organisingmicrotubule preparations. Biophys Chem 127:172–180CrossRefPubMedPubMedCentralGoogle Scholar
  185. Tahedl H, Richter P, Lebert M et al (1997) cAMP is involved in gravitxis signal transduction of Euglena gracilis. Microgravit Sci Technol 10:53–57Google Scholar
  186. Tairbekov MG (1996) The role of signal systems in cell gravisensitivity. Adv Space Res 17:113–119CrossRefPubMedPubMedCentralGoogle Scholar
  187. Tajik A, Zhang Y, Wei F et al (2016) Transcription upregulation via force-induced direct stretching of chromatin. Nat Mater 15:1287–1296CrossRefPubMedPubMedCentralGoogle Scholar
  188. Tamada M, Sheetz MP, Sawada Y (2004) Activation of a signaling cascade by cytoskeleton stretch. Dev Cell 7:709–718CrossRefPubMedPubMedCentralGoogle Scholar
  189. Tauber S, Hauschild S, Crescio C et al (2013) Signal transduction in primary human T lymphocytes in altered gravity–results of the MASER-12 suborbital space flight mission. Cell Commun Signal 11:32CrossRefPubMedPubMedCentralGoogle Scholar
  190. Tauber S, Hauschild S, Paulsen K et al (2015) Signal transduction in primary human T lymphocytes in altered gravity during parabolic flight and clinostat experiments. Cell Physiol Biochem 35:1034–1051CrossRefPubMedPubMedCentralGoogle Scholar
  191. Tauber S, Lauber B, Paulsen K et al (2017) Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity. PLoS One 12:e0175599.  https://doi.org/10.1371/journal.pone.0175599CrossRefPubMedPubMedCentralGoogle Scholar
  192. Thiam HR, Vargas P, Carpi N et al (2016) Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat Commun 7:10997CrossRefPubMedPubMedCentralGoogle Scholar
  193. Thiel CS, Paulsen K, Bradacs G et al (2012) Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity. Cell Commun Signal 10:1CrossRefPubMedPubMedCentralGoogle Scholar
  194. Thiel CS, Hauschild S, Tauber S et al (2015) Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity. Biomed Res Int 2015:363575CrossRefPubMedPubMedCentralGoogle Scholar
  195. Thiel CS, Lauber BA, Polzer J et al (2017a) Time course of cellular and molecular regulation in the immune system in altered gravity: progressive damage or adaptation ? REACH-Rev Human Space Explor 5:22–32Google Scholar
  196. Thiel CS, de Zélicourt D, Tauber S et al (2017b) Rapid adaptation to microgravity in mammalian macrophage cells. Sci Rep 7:43CrossRefPubMedPubMedCentralGoogle Scholar
  197. Thiel CS, Hauschild S, Huge A et al (2017c) Dynamic gene expression response to altered gravity in human T cells. Sci Rep 7:5204CrossRefPubMedPubMedCentralGoogle Scholar
  198. Thiel CS, Huge A, Hauschild S et al (2017d) Stability of gene expression in human T cells in different gravity environments is clustered in chromosomal region 11p15. 4. NPJ Microgravity 3:22CrossRefPubMedPubMedCentralGoogle Scholar
  199. Thiel CS, Tauber S, Christoffel S et al (2018) Rapid coupling between gravitational forces and the transcriptome in human myelomonocytic U937 cells. Sci Rep 8(1)Google Scholar
  200. Thiel CS, Tauber S, Lauber B et al (2019) Rapid morphological and cytoskeletal response to microgravity in human primary macrophages. Int J Mol Sci 20(10):2402Google Scholar
  201. Thorpe SD, Lee DA (2017) Dynamic regulation of nuclear architecture and mechanics—a rheostatic role for the nucleus in tailoring cellular mechanosensitivity. Nucleus 8(3):287–300Google Scholar
  202. Tsang E, Giannetti AM, Shaw D et al (2008) Molecular mechanism of the Syk activation switch. J Biol Chem 283:32650–32659CrossRefGoogle Scholar
  203. Tzima E, Irani-Tehrani M, Kiosses WB et al (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431CrossRefGoogle Scholar
  204. Uhler C, Shivashankar GV (2016) Geometric control and modeling of genome reprogramming. BioArchitecture 6:76–84CrossRefPubMedPubMedCentralGoogle Scholar
  205. Uhler C, Shivashankar GV (2018) Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat Rev Mol Cell Biol 18(12):717–727CrossRefGoogle Scholar
  206. Uva BM, Masini MA, Sturla M et al (2002a) Microgravity-induced programmed cell death in astrocytes. J Gravit Physiol 9:P275–P276PubMedGoogle Scholar
  207. Uva BM, Masini MA, Sturla M et al (2002b) Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture. Brain Res 934:132–139CrossRefGoogle Scholar
  208. Uva BM, Strollo F, Ricci F et al (2005) Morpho-functional alterations in testicular and nervous cells submitted to modelled microgravity. J Endocrinol Investig 28:84–91Google Scholar
  209. Vargas P, Barbier L, Sáez PJ et al (2017) Mechanisms for fast cell migration in complex environments. Curr Opin Cell Biol 48:72–78CrossRefGoogle Scholar
  210. Vartiainen MK, Guettler S, Larijani B et al (2007) Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316:1749–1752CrossRefGoogle Scholar
  211. Versaevel M, Grevesse T, Gabriele S (2012) Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat Commun 3:671CrossRefGoogle Scholar
  212. Verschueren H, van der Taelen I, Dewit J et al (1995) Effects of Clostridium botulinum C2 toxin and cytochalasin D on in vitro invasiveness, motility and F-actin content of a murine T-lymphoma cell line. Eur J Cell Biol 66:335–341PubMedGoogle Scholar
  213. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275CrossRefGoogle Scholar
  214. Volkmann D, Baluska F (2006) Gravity: one of the driving forces for evolution. Protoplasma 229:143–148CrossRefGoogle Scholar
  215. Vorselen D, Roos WH, MacKintosh FC et al (2014) The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB J 28:536–547CrossRefGoogle Scholar
  216. Walther I, Pippia P, Meloni MA et al (1998) Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. FEBS Lett 436:115–118CrossRefPubMedPubMedCentralGoogle Scholar
  217. Wang Y, Gilmore TD (2003) Zyxin and paxillin proteins: focal adhesion plaque LIM domain proteins go nuclear. Biochim Biophys Acta Mol Cell Res 1593:115–120CrossRefGoogle Scholar
  218. Wang N, Stamenovic D (2000) Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am J Physiol Cell Physiol 279:C188–C194CrossRefGoogle Scholar
  219. Wang N, Naruse K, Stamenović D et al (2001) Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci U S A 98:7765–7770CrossRefPubMedPubMedCentralGoogle Scholar
  220. Wang N, Tolić-Nørrelykke IM, Chen J et al (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282:C606–C616CrossRefGoogle Scholar
  221. Wang Y, Botvinick EL, Zhao Y et al (2005) Visualizing the mechanical activation of Src. Nature 434:1040–1045CrossRefGoogle Scholar
  222. Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10:75CrossRefGoogle Scholar
  223. Wang Y, Nagarajan M, Uhler C et al (2017) Orientation and repositioning of chromosomes correlate with cell geometry–dependent gene expression. Mol Biol Cell 28(14):1997–2009Google Scholar
  224. Wilson KL, Foisner R (2010) Lamin-binding proteins. Cold Spring Harb Perspect Biol 2:a000554CrossRefPubMedPubMedCentralGoogle Scholar
  225. Zheng B, Han M, Bernier M et al (2009) Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression. FEBS J 276:2669–2685CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Anatomy, Faculty of MedicineUniversity of ZurichZurichSwitzerland
  2. 2.Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical EngineeringOtto-von-Guericke-University MagdeburgMagdeburgGermany
  3. 3.UZH Space HubUniversity of ZurichZurichSwitzerland
  4. 4.Space Life Sciences Laboratory (SLSL)Kennedy Space CenterExploration ParkUSA

Personalised recommendations