Advertisement

Adaptive Immunity and Spaceflight

  • Brian CrucianEmail author
  • George Makedonas
  • Clarence Sams
Chapter

Abstract

Spaceflight causes alterations in human immunity, a finding which has been well documented immediately following spaceflight. Limited in-flight studies have also confirmed that to some degree immunity is compromised during spaceflight. A comprehensive understanding of the nature of these immune changes is lacking. This chapter reviews the current evidence regarding spaceflight effects on the function of the adaptive immune system, and speculates on potential adverse clinical outcomes. Potential causes for these alterations are discussed elsewhere in this volume (Chap.  11), as are spaceflight effects on the function of the innate immune system (Chap.  12).

References

  1. Boonyaratanakornkit JB, Cogoli A, Li CF, Schopper T, Pippia P, Galleri G et al (2005) Key gravity-sensitive signaling pathways drive T cell activation. FASEB J 19(14):2020–2022PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bradley JH, Stein R, Randolph B, Molina E, Arnold JP, Gregg RK (2017) T cell resistance to activation by dendritic cells requires long-term culture in simulated microgravity. Life Sci Space Res (Amst) 15:55–61.  https://doi.org/10.1016/j.lssr.2017.08.002CrossRefGoogle Scholar
  3. Buravkova LB, Rykova MP, Grigorieva V, Antropova EN (2004) Cell interactions in microgravity: cytotoxic effects of natural killer cells in vitro. J Gravit Physiol 11(2):P177–P180PubMedGoogle Scholar
  4. Chang TT, Spurlock SM, Candelario TL, Grenon SM, Hughes-Fulford M (2015) Spaceflight impairs antigen-specific tolerance induction in vivo and increases inflammatory cytokines. FASEB J 29(10):4122–4132.  https://doi.org/10.1096/fj.15-275073. Epub 2015 Jun 17CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chapes SK, Morrison DR, Guikema JA, Lewis ML, Spooner BS (1994) Production and action of cytokines in space. Adv Space Res 14(8):5–9PubMedCrossRefGoogle Scholar
  6. Chouker A, Morukov B, Sams C (2008) Clinical immunology in new frontiers. Scientific American Presents: Looking up, Europe’s quiet revolution in microgravity research. Scientific American, New York, pp 24–31Google Scholar
  7. Cogoli A (1993) The effect of space flight on human cellular immunity. Environ Med 37(2):107–116PubMedPubMedCentralGoogle Scholar
  8. Cogoli A (1997) Signal transduction in T lymphocytes in microgravity. Gravit Space Biol Bull 10(2):5–16PubMedGoogle Scholar
  9. Cogoli A, Tschopp A, Fuchs-Bislin P (1984) Cell sensitivity to gravity. Science 225(4658):228–230PubMedCrossRefGoogle Scholar
  10. Cooper D, Pellis NR (1998) Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C. J Leukoc Biol 63(5):550–562PubMedCrossRefGoogle Scholar
  11. Crucian B, Sams C (2009) Immune system dysregulation during spaceflight: clinical risk for exploration-class missions. J Leukoc Biol 86(5):1017–1018PubMedCrossRefGoogle Scholar
  12. Crucian BE, Cubbage ML, Sams CF (2000) Altered cytokine production by specific human peripheral blood cell subsets immediately following space flight. J Interf Cytokine Res 20(6):547–556CrossRefGoogle Scholar
  13. Crucian BE, Stowe RP, Pierson DL, Sams CF (2008) Immune system dysregulation following short- vs long-duration spaceflight. Aviat Space Environ Med 79(9):835–843PubMedPubMedCentralCrossRefGoogle Scholar
  14. Crucian B, Stowe R, Mehta S, Uchakin P, Quiriarte H, Pierson D, Sams C (2013) Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J Clin Immunol 33(2):456–465.  https://doi.org/10.1007/s10875-012-9824-7CrossRefPubMedGoogle Scholar
  15. Crucian B, Stowe RP, Mehta S, Quiriarte H, Pierson D, Sams C (2015) Alterations in adaptive immunity persist during long-duration spaceflight. NPJ Microgravity. Sep 3;1:15013. doi:  https://doi.org/10.1038/npjmgrav.2015.13
  16. Crucian B, Johnston S, Mehta S, Stowe R, Uchakin P, Quiriarte H, Pierson D, Laudenslager ML, Sams C (2016a) A case of persistent skin rash and rhinitis with immune system dysregulation onboard the International Space Station. J Allergy Clin Immunol Pract 4(4):759–762.e8.  https://doi.org/10.1016/j.jaip.2015.12.021CrossRefPubMedPubMedCentralGoogle Scholar
  17. Crucian B, Babiak-Vazquez A, Johnston S, Pierson DL, Ott CM, Sams C (2016b) Incidence of clinical symptoms during long-duration orbital spaceflight. Int J Gen Med 9:383–391. eCollection 2016PubMedPubMedCentralCrossRefGoogle Scholar
  18. Feuerecker M, Crucian BE, Quintens R, Pagel J-I, Salam AP, Rybka A, Moreels M, Strewe C, Stowe R, Mehta S, Schelling G, Thiel M, Baatout S, Sams C, Choukèr A (2018) Immune sensitization during one year in the Antarctic high altitude Concordia Environment. Allergy.  https://doi.org/10.1111/all.13545PubMedCrossRefPubMedCentralGoogle Scholar
  19. Fitzgerald W, Chen S, Walz C, Zimmerberg J, Margolis L, Grivel JC (2009) Immune suppression of human lymphoid tissues and cells in rotating suspension culture and onboard the International Space Station. In Vitro Cell Dev Biol Anim 45(10):622–632PubMedPubMedCentralCrossRefGoogle Scholar
  20. Frippiat JP, Crucian BE, de Quervain DJ, Grimm D, Montano N, Praun S, Roozendaal B, Schelling G, Thiel M, Ullrich O, Choukèr A (2016) Towards human exploration of space: the THESEUS review series on immunology research priorities. NPJ Microgravity 2:16040.  https://doi.org/10.1038/npjmgrav.2016.40CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fuchs BB, Medvedev AE (1993) Countermeasures for ameliorating in-flight immune dysfunction. J Leukoc Biol 54(3):245–252PubMedCrossRefGoogle Scholar
  22. Gmunder FK, Konstantinova I, Cogoli A, Lesnyak A, Bogomolov W, Grachov AW (1994) Cellular immunity in cosmonauts during long duration spaceflight on board the orbital MIR station. Aviat Space Environ Med 65(5):419–423PubMedPubMedCentralGoogle Scholar
  23. Gould CL, Lyte M, Williams J, Mandel AD, Sonnenfeld G (1987) Inhibited interferon-gamma but normal interleukin-3 production from rats flown on the space shuttle. Aviat Space Environ Med 58(10):983–986PubMedGoogle Scholar
  24. Gridley DS, Slater JM, Luo-Owen X, Rizvi A, Chapes SK, Stodieck LS et al (2009) Spaceflight effects on T lymphocyte distribution, function and gene expression. J Appl Physiol 106(1):194–202PubMedCrossRefGoogle Scholar
  25. Grove DS, Pishak SA, Mastro AM (1995) The effect of a 10-day space flight on the function, phenotype, and adhesion molecule expression of splenocytes and lymph node lymphocytes. Exp Cell Res 219(1):102–109PubMedCrossRefGoogle Scholar
  26. Hashemi BB, Penkala JE, Vens C, Huls H, Cubbage M, Sams CF (1999) T cell activation responses are differentially regulated during clinorotation and in spaceflight. FASEB J 13(14):2071–2082PubMedCrossRefGoogle Scholar
  27. Hatton JP, Gaubert F, Cazenave JP, Schmitt D (2002) Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells. J Cell Biochem 87(1):39–50PubMedCrossRefGoogle Scholar
  28. Hughes-Fulford M (2003) Function of the cytoskeleton in gravisensing during spaceflight. Adv Space Res 32(8):1585–1593PubMedCrossRefGoogle Scholar
  29. Hughes-Fulford M, Chang TT, Martinez EM, Li CF (2015) Spaceflight alters expression of microRNA during T-cell activation. FASEB J 29(12):4893–4900.  https://doi.org/10.1096/fj.15-277392CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jager A, Kuchroo VK (2010) Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scand J Immunol 72(3):173–184PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kaur I, Simons ER, Kapadia AS, Ott CM, Pierson DL (2008) Effect of spaceflight on ability of monocytes to respond to endotoxins of gram-negative bacteria. Clin Vaccine Immunol 15(10):1523–1528PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kimzey SL, Ritzmann SE, Mengel CE, Fischer CL (1975) Skylab experiment results: hematology studies. Acta Astronaut 2(1–2):141–154CrossRefGoogle Scholar
  33. Konstantinova IV, Antropova EN, Legen’kov VI, Zazhirei VD (1973) Reactivity of lymphoid blood cells in the crew of “Soiuz-6”, “Soiuz-7” and “Soiuz-8” spacecraft before and after flight. Kosm Biol Med 7(6):35–40PubMedPubMedCentralGoogle Scholar
  34. Konstantinova IV, Rykova M, Meshkov D, Peres C, Husson D, Schmitt DA (1995) Natural killer cells after ALTAIR mission. Acta Astronaut 36(8–12):713–718PubMedCrossRefGoogle Scholar
  35. Lewis ML, Reynolds JL, Cubano LA, Hatton JP, Lawless BD, Piepmeier EH (1998) Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 12(11):1007–1018CrossRefGoogle Scholar
  36. Martinez EM, Yoshida MC, Candelario TL, Hughes-Fulford M (2015) Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation. Am J Physiol Regul Integr Comp Physiol 308(6):R480–R488.  https://doi.org/10.1152/ajpregu.00449.2014. Epub 2015 Jan 7CrossRefPubMedPubMedCentralGoogle Scholar
  37. Meehan RT, Neale LS, Kraus ET, Stuart CA, Smith ML, Cintron NM et al (1992) Alteration in human mononuclear leucocytes following space flight. Immunology 76(3):491–497PubMedPubMedCentralGoogle Scholar
  38. Mehta SK, Crucian BE, Stowe RP, Simpson RJ, Ott CM, Sams CF, Pierson DL (2013) Reactivation of latent viruses is associated with increased plasma cytokines in astronauts. Cytokine 61(1):205–209.  https://doi.org/10.1016/j.cyto.2012.09.019.PubMedCrossRefPubMedPubMedCentralGoogle Scholar
  39. Mehta SK, Laudenslager ML, Stowe RP, Crucian BE, Sams CF, Pierson DL (2014) Multiple latent viruses reactivate in astronauts during Space Shuttle missions. Brain Behav Immun 41:210–217.  https://doi.org/10.1016/j.bbi.2014.05.014CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mehta SK, Laudenslager ML, Stowe RP, Crucian BE, Feiveson AH, Sams CF, Pierson DL (2017) Latent virus reactivation in astronauts on the international space station. NPJ Microgravity 2017Apr 3:11. doi:  https://doi.org/10.1038/s41526-017-0015-y. eCollection 2017
  41. Meshkov D, Rykova M (1995) The natural cytotoxicity in cosmonauts on board space stations. Acta Astronaut 36(8–12):719–726PubMedCrossRefGoogle Scholar
  42. Miller ES, Koebel DA, Sonnenfeld G (1995) Influence of spaceflight on the production of interleukin-3 and interleukin-6 by rat spleen and thymus cells. J Appl Physiol 78(3):810–813PubMedCrossRefGoogle Scholar
  43. Mills PJ, Meck JV, Waters WW, D’Aunno D, Ziegler MG (2001) Peripheral leukocyte subpopulations and catecholamine levels in astronauts as a function of mission duration. Psychosom Med 63(6):886–890PubMedCrossRefGoogle Scholar
  44. Morukov VB, Rykova M, Antropova EN, Berendeeva TA, Ponomarev SA, Larina IM (2010) Indicators of innate and adaptive immunity of cosmonauts after long-term space flight to international space station. Fiziol Cheloveka 36(3):19–30PubMedGoogle Scholar
  45. Nash PV, Mastro AM (1992) Variable lymphocyte responses in rats after space flight. Exp Cell Res 202(1):125–131PubMedCrossRefGoogle Scholar
  46. Pippia P, Sciola L, Cogoli-Greuter M, Meloni MA, Spano A, Cogoli A (1996) Activation signals of T lymphocytes in microgravity. J Biotechnol 47(2–3):215–222PubMedCrossRefGoogle Scholar
  47. Rykova MP, Gertsik Iu G, Antropova EN, Buravkova LB (2006) Immunoglobulin e and allergen-specific IgE antibodies in cosmonauts before and after long-duration missions on the International Space Station. Aviakosm Ekolog Med 40(2):19–22PubMedGoogle Scholar
  48. Rykova MP, Antropova EN, Larina IM, Morukov BV (2008) Humoral and cellular immunity in cosmonauts after the ISS missions. Acta Astronaut 63(7–10):697–705CrossRefGoogle Scholar
  49. Simpson RJ, Bigley AB, Spielmann G, Kunz HE, Agha N, Baker F, Rooney B, Mylabathula PL, Graff RM, Crucian BE, Laughlin M, Mehta SK, Pierson DL (2016) Long duration spaceflight impairs NK-cell function in astronauts. Med Sci Sports Exerc 48(5 Suppl 1):87CrossRefGoogle Scholar
  50. Sonnenfeld G, Miller ES (1993) The role of cytokines in immune changes induced by spaceflight. J Leukoc Biol 54(3):253–258PubMedCrossRefGoogle Scholar
  51. Sonnenfeld G, Gould CL, Williams J, Mandel AD (1988) Inhibited interferon production after space flight. Acta Microbiol Hung 35(4):411–416PubMedGoogle Scholar
  52. Sonnenfeld G, Davis S, Taylor GR, Mandel AD, Konstantinova IV, Lesnyak A et al (1996) Effect of space flight on cytokine production and other immunologic parameters of rhesus monkeys. J Interf Cytokine Res 16(5):409–415CrossRefGoogle Scholar
  53. Sonnenfeld G, Foster M, Morton D, Bailliard F, Fowler NA, Hakenewerth AM et al (1998) Spaceflight and development of immune responses. J Appl Physiol 85(4):1429–1433PubMedCrossRefGoogle Scholar
  54. Stowe RP (2003) Impaired effector function in virus-specific T cells in astronauts. NASA Investigators Workshop, Houston, 2003Google Scholar
  55. Stowe RP (2009) Validation of procedures for monitoring crewmember immune function. NASA Investigators Workshop, Houston, 2009Google Scholar
  56. Stowe RP, Sams CF, Mehta SK, Kaur I, Jones ML, Feeback DL et al (1999) Leukocyte subsets and neutrophil function after short-term spaceflight. J Leukoc Biol 65(2):179–186PubMedPubMedCentralCrossRefGoogle Scholar
  57. Stowe RP, Sams CF, Pierson DL (2003) Effects of mission duration on neuroimmune responses in astronauts. Aviat Space Environ Med 74(12):1281–1284PubMedPubMedCentralGoogle Scholar
  58. Tauber S, Hauschild S, Paulsen K, Gutewort A, Raig C, Hürlimann E, Biskup J, Philpot C, Lier H, Engelmann F, Pantaleo A, Cogoli A, Pippia P, Layer LE, Thiel CS, Ullrich O (2015) Signal transduction in primary human T lymphocytes in altered gravity during parabolic flight and clinostat experiments. Cell Physiol Biochem 35(3):1034–1051.  https://doi.org/10.1159/000373930CrossRefPubMedPubMedCentralGoogle Scholar
  59. Taylor GR, Janney RP (1992) In vivo testing confirms a blunting of the human cell-mediated immune mechanism during space flight. J Leukoc Biol 51(2):129–132PubMedPubMedCentralCrossRefGoogle Scholar
  60. Thiel CS, Paulsen K, Bradacs G, Lust K, Tauber S, Dumrese C, Hilliger A, Schoppmann K, Biskup J, Gölz N, Sang C, Ziegler U, Grote KH, Zipp F, Zhuang F, Engelmann F, Hemmersbach R, Cogoli A, Ullrich O (2012) Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity. Cell Commun Signal 10(1):1.  https://doi.org/10.1186/1478-811X-10-1CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yi B, Rykova M, Feuerecker M, Jäger B, Ladinig C, Basner M, Hörl M, Matzel S, Kaufmann I, Strewe C, Nichiporuk I, Vassilieva G, Rinas K, Baatout S, Schelling G, Thiel M, Dinges DF, Morukov B, Choukèr A (2014) 520-d Isolation and confinement simulating a flight to Mars reveals heightened immune responses and alterations of leukocyte phenotype. Brain Behav Immun 40:203–210.  https://doi.org/10.1016/j.bbi.2014.03.018CrossRefPubMedGoogle Scholar
  62. Yi B, Rykova M, Jäger G, Feuerecker M, Hörl M, Matzel S, Ponomarev S, Vassilieva G, Nichiporuk I, Choukèr A (2015) Influences of large sets of environmental exposures on immune responses in healthy adult men. Sci Rep 5:13367.  https://doi.org/10.1038/srep13367CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Brian Crucian
    • 1
    Email author
  • George Makedonas
    • 1
    • 2
  • Clarence Sams
    • 1
  1. 1.NASA-Johnson Space CenterHoustonUSA
  2. 2.JES TechHoustonUSA

Personalised recommendations