Advertisement

Endocannabinoids, “New-Old” Mediators of Stress Homeostasis

  • Daniela Hauer
  • Roland Toth
  • Gustav SchellingEmail author
Chapter

Abstract

The endocannabinoid system (ECS) is an old and evolutionarily well preserved neurobiologic system controlling some key elements of organ homeostasis. In contrast to its long biologic history, the scientific record of the ECS is very short. Whereas the occurrence of genes for the endocannabinoid receptors has been described in ancient animals reaching at least as far back as the predecessor of tetrapods (amphibians reptiles, birds, and mammals), modern science has only more recently demonstrated that the ECS is involved in the regulation of a wide range of essential central and peripheral processes which include metabolism and feeding behavior, inflammatory- and anti-inflammatory immunologic reactions, neurobehavioral changes during stress and anxiety and the regulation of central functions such as cognition and memory. One of the most important roles of the ECS lies in the regulation and orchestration of the central and immunologic stress response to aversive and threatening life conditions. There are already data that the ECS is affected in humans during highly aversive conditions of parabolic flights and space flights as well as in other extreme living conditions (e.g. Antarctica). The ECS may therefore have an important function for adaption processes in such aversive conditions.

References

  1. Abdulnour J, Yasari S, Rabasa-Lhoret R, Faraj M, Petrosino S, Piscitelli F, Prud’ Homme D, Di Marzo V (2014) Circulating endocannabinoids in insulin sensitive vs. insulin resistant obese postmenopausal women. A MONET group study. Obesity (Silver Spring) 22(1):211–216Google Scholar
  2. Alarcón-Yaquetto DE, Caballero L, Gonzales GF (2017) Association between plasma N-Acylethanolamides and high hemoglobin concentration in Southern Peruvian highlanders. High Alt Med Biol 18(4):322–329Google Scholar
  3. Al Suleimani YM, Al Mahruqi AS (2017) The endogenous lipid N-arachidonoyl glycine is hypotensive and nitric oxide-cGMP-dependent vasorelaxant. Eur J Pharmacol 794:209–215Google Scholar
  4. Bab I, Ofek O, Tam J, Rehnelt J, Zimmer A (2008) Endocannabinoids and the regulation of bone metabolism. J Neuroendocrinol 20(Suppl 1):69–74CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bab IA, Yirmiya R (2010) Depression and bone mass. Ann N Y Acad Sci 1192:170–175CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baldassarri S, Bertoni A, Bagarotti A, Sarasso C, Zanfa M, Catani MV, Avigliano L, Maccarrone M, Torti M, Sinigaglia F (2008) The endocannabinoid 2-arachidonoylglycerol activates human platelets through non-CB1/CB2 receptors. J Thromb Haemost 6:1772–1779CrossRefPubMedPubMedCentralGoogle Scholar
  7. Basavarajappa BS, Hungund BL (2005) Role of the endocannabinoid system in the development of tolerance to alcohol. Alcohol Alcohol 40:15–24CrossRefPubMedPubMedCentralGoogle Scholar
  8. Batkai S, Pacher P, Osei-Hyiaman D, Radaeva S, Liu J, Harvey-White J, Offertaler L, Mackie K, Rudd MA, Bukoski RD, Kunos G (2004) Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. Circulation 110:1996–2002CrossRefPubMedPubMedCentralGoogle Scholar
  9. Begg M, Mo FM, Offertaler L, Batkai S, Pacher P, Razdan RK, Lovinger DM, Kunos G (2003) G protein-coupled endothelial receptor for atypical cannabinoid ligands modulates a Ca2+-dependent K+ current. J Biol Chem 278:46188–46194CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bo Tan HBB, Rimmerman N, Srinivasan H, Yu YW, Krey JF, Monn MF, Chen JS-C, Hu SS-J, Pickens SR, Walker JM (2006) Targeted lipidomics: discovery of new fatty acyl amides. AAPS J 8(3):E461–E465CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bowles NP, Karatsoreos IN, Li X, Vemuri VK, Wood JA, Li Z, Tamashiro KL, Schwartz GJ, Makriyannis AM, Kunos G, Hillard CJ, McEwen BS, Hill MN (2015) A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome. Proc Natl Acad Sci U S A 112(1):285–290Google Scholar
  12. Braun A, Engel T, Aguilar-Pimentel JA, Zimmer A, Jakob T, Behrendt H, Mempel M (2011) Beneficial effects of cannabinoids (CB) in a murine model of allergen-induced airway inflammation: Role of CB(1)/CB(2) receptors. Immunobiology 216(4):466–476CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brozoski DT, Dean C, Hopp FA, Seagard JL (2005) Uptake blockade of endocannabinoids in the NTS modulates baroreflex-evoked sympathoinhibition. Brain Res 1059:197–202CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen DJ, Gao M, Gao FF, Su QX, Wu J (2017) Brain cannabinoid receptor 2: expression, function and modulation. Acta Pharmacol Sin 38:312–316CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen Y, McCarron RM, Ohara Y, Bembry J, Azzam N, Lenz FA, Shohami E, Mechoulam R, Spatz M (2000) Human brain capillary endothelium: 2-arachidonoglycerol (endocannabinoid) interacts with endothelin-1. Circ Res 87:323–327CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chiurchiù V, van der Stelt M, Centonze D, Maccarrone M (2018) The endocannabinoid system and its therapeutic exploitation in multiple sclerosis: clues for other neuroinflammatory diseases. Prog Neurobiol 160:82–100Google Scholar
  17. Chouker A, Kaufmann I, Kreth S, Hauer D, Feuerecker M, Thieme D, Vogeser M, Thiel M, Schelling G (2010) Motion sickness, stress and the endocannabinoid system. PLoS One 5:e10752CrossRefPubMedPubMedCentralGoogle Scholar
  18. del Carmen García MA-GE, Celuch SM (2003) Hypotensive effect of anandamide through the activation of CB1 and VR1 spinal receptors in urethane-anesthetized rats. Naunyn Schmiedeberg's Arch Pharmacol 368(4):270–276CrossRefGoogle Scholar
  19. De Luca R, Mazur K, Kernder A, Suvorava T, Kojda G, Haas HL, Sergeeva OA (2018) Mechanisms of N-oleoyldopamine activation of central histaminergic neurons. Neuropharmacology 143:327–338Google Scholar
  20. Di Marzo V, Verrijken A, Hakkarainen A, Petrosino S, Mertens I, Lundbom N, Piscitelli F, Westerbacka J, Soro-Paavonen A, Matias I, Van Gaal L, Taskinen MR (2009) Role of insulin as a negative regulator of plasma endocannabinoid levels in obese and nonobese subjects. Eur J Endocrinol 161(5):715–722Google Scholar
  21. Dotsey E, Ushach I, Pone E, Nakajima R, Jasinskas A, Argueta DA, Dillon A, DiPatrizio N, Davies H, Zlotnik A, Crompton PD, Felgner PL (2017) Transient cannabinoid Receptor 2 blockade during immunization heightens intensity and breadth of antigen-specific antibody responses in young and aged mice. Sci Rep 7:42584Google Scholar
  22. Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613PubMedPubMedCentralGoogle Scholar
  23. Dlugos A, Childs E, Stuhr KL, Hillard CJ, de Wit H (2012) Acute stress increases circulating anandamide and other N-acylethanolamines in healthy humans. Neuropsychopharmacology 37:2416–2427CrossRefPubMedPubMedCentralGoogle Scholar
  24. Duncan M, Millns P, Smart D, Wright JE, Kendall DA, Ralevic V (2004) Noladin ether, a putative endocannabinoid, attenuates sensory neurotransmission in the rat isolated mesenteric arterial bed via a non-CB1/CB2 G(i/o) linked receptor. Br J Pharmacol 142:509–518CrossRefPubMedPubMedCentralGoogle Scholar
  25. Durst R, Danenberg H, Gallily R, Mechoulam R, Meir K, Grad E, Beeri R, Pugatsch T, Tarsish E, Lotan C (2007) Cannabidiol, a nonpsychoactive Cannabis constituent, protects against myocardial ischemic reperfusion injury. Am J Physiol Heart Circ Physiol 293:H3602–H3607CrossRefPubMedPubMedCentralGoogle Scholar
  26. Effimia Gkoumassi BGJDMJD, Elzinga CRS, Hasenbosch RE, Meurs H, Nelemans SA, Schmidt M, Zaagsma J (2009) (Endo)cannabinoids mediate different Ca2+ entry mechanisms in human bronchial epithelial cells. Naunyn-Schmied Arch Pharmacol 380(1):67–77CrossRefGoogle Scholar
  27. Feuerecker M, Hauer D, Toth R, Demetz F, Holzl J, Thiel M, Kaufmann I, Schelling G, Chouker A (2012) Effects of exercise stress on the endocannabinoid system in humans under field conditions. Eur J Appl Physiol 112:2777–2781CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ford WR, Honan SA, White R, Hiley CR (2002) Evidence of a novel site mediating anandamide-induced negative inotropic and coronary vasodilatator responses in rat isolated hearts. Br J Pharmacol 135:1191–1198CrossRefPubMedPubMedCentralGoogle Scholar
  29. Freemon FR (1972) Effects of marihuana on sleeping states. JAMA 220:1364–1365CrossRefGoogle Scholar
  30. Gatta-Cherifi B, Matias I, Vallée M, Tabarin A, Marsicano G, Piazza PV, Cota D (2012) Simultaneous postprandial deregulation of the orexigenic endocannabinoid anandamide and the anorexigenic peptide YY in obesity. Int J Obes (Lond) 36(6):880–885Google Scholar
  31. Gauthier KM, Baewer DV, Hittner S, Hillard CJ, Nithipatikom K, Reddy DS, Falck JR, Campbell WB (2005) Endothelium-derived 2-arachidonylglycerol: an intermediate in vasodilatory eicosanoid release in bovine coronary arteries. Am J Physiol Heart Circ Physiol 288:H1344–H1351CrossRefGoogle Scholar
  32. Godlewski G, Offertaler L, Osei-Hyiaman D, Mo FM, Harvey-White J, Liu J, Davis MI, Zhang L, Razdan RK, Milman G, Pacher P, Mukhopadhyay P, Lovinger DM, Kunos G (2009) The endogenous brain constituent N-arachidonoyl L-serine is an activator of large conductance Ca2+-activated K+ channels. J Pharmacol Exp Ther 328:351–361CrossRefGoogle Scholar
  33. Grabiec U, Dehghani F (2017) N-Arachidonoyl dopamine: a novel endocannabinoid and endovanilloid with widespread physiological and pharmacological activities. Cannabis Cannabinoid Res 2(1):183–196.  https://doi.org/10.1089/can
  34. Hanlon EC, Tasali E, Leproult R, Stuhr KL, Doncheck E, de Wit H, Hillard CJ, Van Cauter E (2016) Sleep restriction enhances the daily rhythm of circulating levels of endocannabinoid 2-arachidonoylglycerol. Sleep 39(3):653–664Google Scholar
  35. Hauer D, Schelling G, Gola H, Campolongo P, Morath J, Roozendaal B, Hamuni G, Karabatsiakis A, Atsak P, Vogeser M, Kolassa IT (2013) Plasma concentrations of endocannabinoids and related primary fatty acid amides in patients with post-traumatic stress disorder. PLoS One 8:e62741CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hauer D, Weis F, Papassotiropoulos A, Schmoeckel M, Lieke J, Kaufmann I, Kirchhoff F, Vogeser M, Roozendaal B, Briegel J, de Quervain D, Schelling G (2010) Relationship of a common polymorphism of the glucocorticoid receptor gene to traumatic memories and posttraumatic stress disorder in patients after intensive care therapy. Crit Care Med 30:7Google Scholar
  37. Hayase T (2007) Chronologically overlapping occurrences of nicotine-induced anxiety- and depression-related behavioral symptoms: effects of anxiolytic and cannabinoid drugs. BMC Neurosci 8:76CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hayase T (2008) Nicotine (NC)-induced “depressive” behavioral symptoms and effects of antidepressants including cannabinoids (CBs). J Toxicol Sci 33:555–564CrossRefPubMedPubMedCentralGoogle Scholar
  39. Herrera-Solis A, Vasquez KG, Prospero-Garcia O (2010) Acute and subchronic administration of anandamide or oleamide increases REM sleep in rats. Pharmacol Biochem Behav 95:106–112CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hill MN, McEwen BS (2009a) Involvement of the endocannabinoid system in the neurobehavioural effects of stress and glucocorticoids. Prog Neuro-Psychopharmacol Biol Psychiatry.  https://doi.org/10.1016/j.pnpbp.2009.11.001
  41. Hill MN, McEwen BS (2009b) Endocannabinoids: the silent partner of glucocorticoids in the synapse. Proc Natl Acad Sci U S A 106:4579–4580CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hill MN, Miller GE, Carrier EJ, Gorzalka BB, Hillard CJ (2009) Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology 34:1257–1262CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hill MN, Bierer LM, Makotkine I, Golier JA, Galea S, McEwen BS, Hillard CJ, Yehuda R (2013) Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the World Trade Center attacks. Psychoneuroendocrinology 38:2952–2961CrossRefGoogle Scholar
  44. Hillard CJ. (2018) Circulating endocannabinoids: from whence do they come and where are they going? Neuropsychopharmacology:155–172Google Scholar
  45. Ho WS, Barrett DA, Randall MD (2008) ‘Entourage’ effects of N-palmitoylethanolamide and N-oleoylethanolamide on vasorelaxation to anandamide occur through TRPV1 receptors. Br J Pharmacol 155:837–846CrossRefPubMedPubMedCentralGoogle Scholar
  46. Howlett AC (2005) Cannabinoid receptor signaling. Handb Exp Pharmacol 168:53–79CrossRefGoogle Scholar
  47. Im DS (2009) New intercellular lipid mediators and their GPCRs: an update. Prostaglandins Other Lipid Mediat 89:53–56CrossRefPubMedPubMedCentralGoogle Scholar
  48. Jhaveri MD, Richardson D, Kendall DA, Barrett DA, Chapman V (2006) Analgesic effects of fatty acid amide hydrolase inhibition in a rat model of neuropathic pain. J Neurosci 26:13318–13327CrossRefPubMedPubMedCentralGoogle Scholar
  49. Joseph J, Niggemann B, Zaenker KS, Entschladen F (2004) Anandamide is an endogenous inhibitor for the migration of tumor cells and T lymphocytes. Cancer Immunol Immunother 53:723–728CrossRefGoogle Scholar
  50. Jones EK, Kirkham TC (2012) Noladin ether, a putative endocannabinoid, enhances motivation to eat after acute systemic administration in rats. Br J Pharmacol 166(6):1815–1821Google Scholar
  51. Jumpertz R, Wiesner T, Bluher M, Engeli S, Batkai S, Wirtz H, Bosse-Henck A, Stumvoll M (2010) Circulating endocannabinoids and N-acyl-ethanolamides in patients with sleep apnea-specific role of oleoylethanolamide. Exp Clin Endocrinol Diabetes 118:591–595CrossRefPubMedPubMedCentralGoogle Scholar
  52. Jyotaki M, Shigemura N, Ninomiya Y (2010) Modulation of sweet taste sensitivity by orexigenic and anorexigenic factors. Endocr J 57:467–475CrossRefGoogle Scholar
  53. Karsak M, Cohen-Solal M, Freudenberg J, Ostertag A, Morieux C, Kornak U, Essig J, Erxlebe E, Bab I, Kubisch C, de Vernejoul MC, Zimmer A (2005) Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum Mol Genet 14:3389–3396CrossRefGoogle Scholar
  54. Kaufmann I, Hauer D, Huge V, Vogeser M, Campolongo P, Chouker A, Thiel M, Schelling G (2009) Enhanced anandamide plasma levels in patients with complex regional pain syndrome following traumatic injury: a preliminary report. Eur Surg Res 43:325–329CrossRefGoogle Scholar
  55. Klein TW, Newton C, Larsen K, Lu L, Perkins I, Nong L, Friedman H (2003) The cannabinoid system and immune modulation. J Leukoc Biol 74:486–496CrossRefGoogle Scholar
  56. Knight JM, Szabo A, Zhao S, Lyness JM, Sahler OJ, Liesveld JL, Sander T, Rizzo JD, Hillard CJ, Moynihan JA (2015) Circulating endocannabinoids during hematopoietic stem cell transplantation: a pilot study. Neurobiol Stress 2:44–50Google Scholar
  57. Koethe D, Schreiber D, Giuffrida A, Mauss C, Faulhaber J, Heydenreich B, Hellmich M, Graf R, Klosterkotter J, Piomelli D, Leweke FM (2009) Sleep deprivation increases oleoylethanolamide in human cerebrospinal fluid. J Neural Transm 116:301–305Google Scholar
  58. Konieczny J, Przegalinski E, Pokorski M (2009) N-Oleoyl-dopamine decreases muscle rigidity induced by reserpine in rats. Int J Immunopathol Pharmacol 22:21–28CrossRefGoogle Scholar
  59. Kozlowska H, Baranowska M, Schlicker E, Kozlowski M, Laudanski J, Malinowska B (2008) Virodhamine relaxes the human pulmonary artery through the endothelial cannabinoid receptor and indirectly through a COX product. Br J Pharmacol 155:1034–1042CrossRefPubMedPubMedCentralGoogle Scholar
  60. Krumbholz A, Anielski P, Reisch N, Schelling G, Thieme D (2013) Diagnostic value of concentration profiles of glucocorticosteroids and endocannabinoids in hair. Ther Drug Monit 35:600–607PubMedGoogle Scholar
  61. Krylatov AV, Maslov LN, Ermakov S, Lasukova OV, Barzakh EI, Crawford D, Pertwee RG (2007) Significance of cardiac cannabinoid receptors in regulation of cardiac rhythm, myocardial contractility, and electrophysiologic processes in heart. Izv Akad Nauk Ser Biol 1:35–44Google Scholar
  62. Ledent C, Valverde O, Cossu G, Petitet F, Aubert JF, Beslot F, Bohme GA, Imperato A, Pedrazzini T, Roques BP, Vassart G, Fratta W, Parmentier M (1999) Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283:401–404CrossRefGoogle Scholar
  63. Maccarrone M, Pauselli R, Di Rienzo M, Finazzi-Agro A (2002) Binding, degradation and apoptotic activity of stearoylethanolamide in rat C6 glioma cells. Biochem J 366:137–144CrossRefPubMedPubMedCentralGoogle Scholar
  64. Maccarrone M, Lorenzon T, Bari M, Melino G, Finazzi-Agro A (2000) Anandamide induces apoptosis in human cells via vanilloid receptors. Evidence for a protective role of cannabinoid receptors. J Biol Chem 275:31938–31945CrossRefPubMedPubMedCentralGoogle Scholar
  65. Mach F, Steffens S (2008) The role of the endocannabinoid system in atherosclerosis. J Neuroendocrinol 20(Suppl 1):53–57CrossRefPubMedPubMedCentralGoogle Scholar
  66. Maeda N, Osanai T, Kushibiki M, Fujiwara T, Tamura Y, Oowada S, Higuma T, Sasaki S, Yokoyama J, Yoshimachi F, Matsunaga T, Hanada H, Okumura K (2009) Increased serum anandamide level at ruptured plaque site in patients with acute myocardial infarction. Fundam Clin Pharmacol 23:351–357CrossRefPubMedPubMedCentralGoogle Scholar
  67. Mallet PEB, Beninger RJ (1996) The endogenous cannabinoid receptor agonist anandamide impairs memory in rats. Behav Pharmacol 7:261–275CrossRefGoogle Scholar
  68. Mechoulam R, Gaoni Y (1965) A total synthesis of Dl-delta-1-tetrahydrocannabinol, the active constituent of hashish. J Am Chem Soc 87:3273–3275CrossRefPubMedPubMedCentralGoogle Scholar
  69. Mechoulam R, Fride E, Hanus L, Sheskin T, Bisogno T, Di Marzo V, Bayewitch M, Vogel Z (1997) Anandamide may mediate sleep induction. Nature 389:25–26CrossRefGoogle Scholar
  70. Monteleone AM, Di Marzo V, Monteleone P, Dalle Grave R, Aveta T, Ghoch ME, Piscitelli F, Volpe U, Calugi S, Maj M (2016) Responses of peripheral endocannabinoids and endocannabinoid-related compounds to hedonic eating in obesity. Eur J Nutr 55(4):1799–1805Google Scholar
  71. Movahed P, Evilevitch V, Andersson TL, Jonsson BA, Wollmer P, Zygmunt PM, Hogestatt ED (2005) Vascular effects of anandamide and N-acylvanillylamines in the human forearm and skin microcirculation. Br J Pharmacol 146:171–179CrossRefPubMedPubMedCentralGoogle Scholar
  72. Mulawa EA, Kirkwood JS, Wolfe LM, Wojda SJ, Prenni JE, Florant GL, Donahue SW (2018) Seasonal changes in endocannabinoid concentrations between active and hibernating marmots (marmota flaviventris). J Biol Rhythms 33(4):388–401Google Scholar
  73. Murillo-Rodriguez E, Sanchez-Alavez M, Navarro L, Martinez-Gonzalez D, Drucker-Colin R, Prospero-Garcia O (1998) Anandamide modulates sleep and memory in rats. Brain Res 812:270–274CrossRefGoogle Scholar
  74. Neumeister A, Normandin MD, Pietrzak RH, Piomelli D, Zheng MQ, Gujarro-Anton A, Potenza MN, Bailey CR, Lin SF, Najafzadeh S, Ropchan J, Henry S, Corsi-Travali S, Carson RE, Huang Y (2013) Elevated brain cannabinoid CB receptor availability in post-traumatic stress disorder: a positron emission tomography study. Mol Psychiatry 18(9):1034–1040CrossRefPubMedPubMedCentralGoogle Scholar
  75. Niederhoffer N, Szabo B (1999) Effect of the cannabinoid receptor agonist WIN55212-2 on sympathetic cardiovascular regulation. Br J Pharmacol 126:457–466CrossRefPubMedPubMedCentralGoogle Scholar
  76. O’Sullivan SE, Kendall DA (2009) Cannabinoid activation of peroxisome proliferator-activated receptors: potential for modulation of inflammatory disease. Immunobiology 215(8):611–616CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ofek O, Karsak M, Leclerc N, Fogel M, Frenkel B, Wright K, Tam J, Attar-Namdar M, Kram V, Shohami E, Mechoulam R, Zimmer A, Bab I (2006) Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci U S A 103:696–701CrossRefPubMedPubMedCentralGoogle Scholar
  78. Offertaler L, Mo FM, Batkai S, Liu J, Begg M, Razdan RK, Martin BR, Bukoski RD, Kunos G (2003) Selective ligands and cellular effectors of a G protein-coupled endothelial cannabinoid receptor. Mol Pharmacol 63:699–705CrossRefPubMedPubMedCentralGoogle Scholar
  79. Olatinsu AO, Sihag J, Jones PJH (2017) Relationship between circulating fatty acids and fatty acid ethanolamide levels after a single 2-h dietary fat feeding in male Sprague-dawley rats: elevated levels of oleoylethanolamide, palmitoylethanolamide, linoleoylethanolamide, arachidonoylethanolamide and docosahexanoylethanolamide after a single 2 h dietary fat feeding in male Sprague Dawley rats. Lipids 52(11):901–906Google Scholar
  80. Pacher P, Mechoulam R (2011) Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog Lipid Res 50(2):193–211CrossRefPubMedPubMedCentralGoogle Scholar
  81. Pacher P, Batkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462CrossRefPubMedPubMedCentralGoogle Scholar
  82. Pandey R, Mousawy K, Nagarkatti M, Nagarkatti P (2009) Endocannabinoids and immune regulation. Pharmacol Res 60:85–92CrossRefPubMedPubMedCentralGoogle Scholar
  83. Panikashvili D, Shein NA, Mechoulam R, Trembovler V, Kohen R, Alexandrovich A, Shohami E (2006) The endocannabinoid 2-AG protects the blood-brain barrier after closed head injury and inhibits mRNA expression of proinflammatory cytokines. Neurobiol Dis 22(2):257–264Google Scholar
  84. Parmar N, Ho WS (2010) N-Arachidonoyl glycine, an endogenous lipid that acts as a vasorelaxant via nitric oxide and large conductance calcium-activated potassium channels. Br J Pharmacol 160:594–603CrossRefPubMedPubMedCentralGoogle Scholar
  85. Pertwee RG (2001) Cannabinoid receptors and pain. Prog Neurobiol 63:569–611CrossRefPubMedPubMedCentralGoogle Scholar
  86. Pertwee RG, Ross RA (2002) Cannabinoid receptors and their ligands. Prostaglandins Leukot Essent Fatty Acids 66:101–121CrossRefPubMedPubMedCentralGoogle Scholar
  87. Pfitzer T, Niederhoffer N, Szabo B (2005) Search for an endogenous cannabinoid-mediated effect in the sympathetic nervous system. Naunyn Schmiedeberg’s Arch Pharmacol 371:9–17CrossRefGoogle Scholar
  88. Piro JR, Suidan GL, Quan J, Pi Y, O’Neill SM, Ilardi M, Pozdnyakov N, Lanz TA, Xi H, Bell RD, Samad TA (2018) Inhibition of 2-AG hydrolysis differentially regulates blood brain barrier permeability after injury. J Neuroinflammation 15(1):142Google Scholar
  89. Pisanti S, Borselli C, Oliviero O, Laezza C, Gazzerro P, Bifulco M (2007) Antiangiogenic activity of the endocannabinoid anandamide: correlation to its tumor-suppressor efficacy. J Cell Physiol 211:495–503CrossRefPubMedPubMedCentralGoogle Scholar
  90. Przegalinski E, Filip M, Zajac D, Pokorski M (2006) N-Oleoyl-dopamine increases locomotor activity in the rat. Int J Immunopathol Pharmacol 19:897–904Google Scholar
  91. Randall MD, Kendall DA, O’Sullivan S (2004) The complexities of the cardiovascular actions of cannabinoids. Br J Pharmacol 142:20–26CrossRefPubMedPubMedCentralGoogle Scholar
  92. Sah P (2002) Never fear, cannabinoids are here. Nature 418:488–489CrossRefPubMedPubMedCentralGoogle Scholar
  93. Sancho R, Macho A, de La Vega L, Calzado MA, Fiebich BL, Appendino G, Munoz E (2004) Immunosuppressive activity of endovanilloids: N-arachidonoyl-dopamine inhibits activation of the NF-kappa B, NFAT, and activator protein 1 signaling pathways. J Immunol 172:2341–2351CrossRefPubMedPubMedCentralGoogle Scholar
  94. Schmidt A, Brune K, Hinz B (2006) Determination of the endocannabinoid anandamide in human plasma by high-performance liquid chromatography. Biomed Chromatogr 20:336–342CrossRefPubMedPubMedCentralGoogle Scholar
  95. Schroeder C, Batkai S, Engeli S, Tank J, Diedrich A, Luft FC, Jordan J (2009) Circulating endocannabinoid concentrations during orthostatic stress. Clin Auton Res 19:343–346CrossRefPubMedPubMedCentralGoogle Scholar
  96. Schloss MJ, Horckmans M, Guillamat-Prats R, Hering D, Lauer E, Lenglet S, Weber C, Thomas A, Steffens S (2019) 2-Arachidonoylglycerol mobilizes myeloid cells and worsens heart function after acute myocardial infarction. Cardiovasc Res 115(3):602–613Google Scholar
  97. Selye H (1936) Syndrome produced by diverse nocuous agents. Nature 138:32CrossRefGoogle Scholar
  98. Sergeeva OA, De Luca R, Mazur K, Chepkova AN, Haas HL, Bauer A (2017) N-oleoyldopamine modulates activity of midbrain dopaminergic neurons through multiple mechanisms. Neuropharmacology 119:111–122Google Scholar
  99. Sido JM, Nagarkatti PS, Nagarkatti M (2016) Production of endocannabinoids by activated T cells and B cells modulates inflammation associated with delayed-type hypersensitivity. Eur J Immunol 46:1472–1479CrossRefPubMedPubMedCentralGoogle Scholar
  100. Singh P, Sharma P, Nakade UP, Sharma A, Gari M, Choudhury S, Shukla A, Garg SK (2018) Endocannabinoid-mediated modulation of Gq protein-coupled receptor mediates vascular hyporeactivity to nor-adrenaline during polymicrobial sepsis. Pharmacol Rep 70(6):1150–1157Google Scholar
  101. Sophocleous A, Marino S, Kabir D, Ralston SH, Idris AI (2017) Combined deficiency of the Cnr1 and Cnr2 receptors protects against age-related bone loss by osteoclast inhibition. Aging Cell 16(5):1051–1061Google Scholar
  102. Steiner MA, Wotjak CT (2008) Role of the endocannabinoid system in regulation of the hypothalamic-pituitary-adrenocortical axis. Prog Brain Res 170:397–432CrossRefPubMedPubMedCentralGoogle Scholar
  103. Stephen V, Mahler KSS, Berridge KC (2007) Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances ‘liking’ of a sweet reward. Neuropsychopharmacology 32(11):2267–2278CrossRefGoogle Scholar
  104. Steudte S, Kirschbaum C, Gao W, Alexander N, Schonfeld S, Hoyer J, Stalder T (2013) Hair cortisol as a biomarker of traumatization in healthy individuals and posttraumatic stress disorder patients. Biol Psychiatry 74:639–646CrossRefPubMedPubMedCentralGoogle Scholar
  105. Sticht MA, Limebeer CL, Rafla BR, Abdullah RA, Poklis JL, Ho W, Niphakis MJ, Cravatt BF, Sharkey KA, Lichtman AH, Parker LA (2016) Endocannabinoid regulation of nausea is mediated by 2-arachidonoylglycerol (2-AG) in the rat visceral insular cortex. Neuropharmacology 102:92–102Google Scholar
  106. Storozhuk MV, Zholos AV (2018) TRP channels as novel targets for endogenous ligands: focus on endocannabinoids and nociceptive signalling. Curr Neuropharmacol 16:137–150CrossRefPubMedPubMedCentralGoogle Scholar
  107. Strewe C, Feuerecker M, Nichiporuk I, Kaufmann I, Hauer D, Morukov B, Schelling G, Chouker A (2012) Effects of parabolic flight and spaceflight on the endocannabinoid system in humans. Rev Neurosci 23:673–680CrossRefPubMedPubMedCentralGoogle Scholar
  108. Strewe C, Thieme D, Dangoisse C, Fiedel B, van den Berg F, Bauer H, Salam AP, Gössmann-Lang P, Campolongo P, Moser D, Quintens R, Moreels M, Baatout S, Kohlberg E, Schelling G, Choukèr A, Feuerecker M (2018) Modulations of neuroendocrine stress responses during confinement in antarctica and the role of hypobaric hypoxia. Front Physiol 9:1647Google Scholar
  109. Strollo F (1999) Hormonal changes in humans during spaceflight. Adv Space Biol Med 7:99–129CrossRefPubMedPubMedCentralGoogle Scholar
  110. Su JY, Vo AC (2007) 2-Arachidonylglyceryl ether and abnormal cannabidiol-induced vascular smooth muscle relaxation in rabbit pulmonary arteries via receptor-pertussis toxin sensitive G proteins-ERK1/2 signaling. Eur J Pharmacol 559:189–195CrossRefPubMedPubMedCentralGoogle Scholar
  111. Sun Y, Alexander SP, Garle MJ, Gibson CL, Hewitt K, Murphy SP, Kendall DA, Bennett AJ (2007) Cannabinoid activation of PPAR alpha; a novel neuroprotective mechanism. Br J Pharmacol 152:734–743CrossRefPubMedPubMedCentralGoogle Scholar
  112. Sunano S, Watanabe H, Tanaka S, Sekiguchi F, Shimamura K (1999) Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats. Br J Pharmacol 126:709–716CrossRefPubMedPubMedCentralGoogle Scholar
  113. Tanasescu R, Constantinescu CS (2010) Cannabinoids and the immune system: an overview. Immunobiology 215:588–597CrossRefPubMedPubMedCentralGoogle Scholar
  114. Tasker J (2004) Endogenous cannabinoids take the edge off neuroendocrine responses to stress. Endocrinology 145:5429–5430CrossRefPubMedPubMedCentralGoogle Scholar
  115. Terrazzino S, Berto F, Dalle Carbonare M, Fabris M, Guiotto A, Bernardini D, Leon A (2004) Stearoylethanolamide exerts anorexic effects in mice via down-regulation of liver stearoyl-coenzyme A desaturase-1 mRNA expression. FASEB J 18:1580–1582CrossRefPubMedPubMedCentralGoogle Scholar
  116. Thieme U, Schelling G, Hauer D, Greif R, Dame T, Laubender RP, Bernhard W, Thieme D, Campolongo P, Theiler L (2014) Quantification of anandamide and 2-arachidonoylglycerol plasma levels to examine potential influences of tetrahydrocannabinol application on the endocannabinoid system in humans. Drug Test Anal 6:17–23Google Scholar
  117. Tsuboi K, Uyama T, Okamoto Y, Ueda N (2018) Endocannabinoids and related N-acylethanolamines: biological activities and metabolism. Inflamm Regen. 38:28Google Scholar
  118. Vaughn LK, Denning G, Stuhr KL, de Wit H, Hill MN, Hillard CJ (2010) Endocannabinoid signalling: has it got rhythm? Br J Pharmacol 160:530–543CrossRefPubMedPubMedCentralGoogle Scholar
  119. Venderova K, Brown TM, Brotchie JM (2005) Differential effects of endocannabinoids on [(3)H]-GABA uptake in the rat globus pallidus. Exp Neurol 194:284–287CrossRefPubMedPubMedCentralGoogle Scholar
  120. Vogeser M, Schelling G (2007) Pitfalls in measuring the endocannabinoid 2-arachidonoyl glycerol in biological samples. Clin Chem Lab Med 45:1023–1025PubMedPubMedCentralGoogle Scholar
  121. Vogeser M, Hauer D, Christina Azad S, Huber E, Storr M, Schelling G (2006) Release of anandamide from blood cells. Clin Chem Lab Med 44:488–491PubMedPubMedCentralGoogle Scholar
  122. Vuong LA, Mitchell VA, Vaughan CW (2008) Actions of N-arachidonyl-glycine in a rat neuropathic pain model. Neuropharmacology 54:189–193CrossRefPubMedPubMedCentralGoogle Scholar
  123. Wagner JA, Abesser M, Karcher J, Laser M, Kunos G (2005) Coronary vasodilator effects of endogenous cannabinoids in vasopressin-preconstricted unpaced rat isolated hearts. J Cardiovasc Pharmacol 46:348–355CrossRefPubMedPubMedCentralGoogle Scholar
  124. Wagner JA, Varga K, Ellis EF, Rzigalinski BA, Martin BR, Kunos G (1997) Activation of peripheral CB1 cannabinoid receptors in haemorrhagic shock. Nature 390:518–521CrossRefPubMedPubMedCentralGoogle Scholar
  125. Wagner JA, Hu K, Bauersachs J, Karcher J, Wiesler M, Goparaju SK, Kunos G, Ertl G (2001) Endogenous cannabinoids mediate hypotension after experimental myocardial infarction. J Am Coll Cardiol 38:2048–2054CrossRefPubMedPubMedCentralGoogle Scholar
  126. Weis F, Beiras-Fernandez A, Sodian R, Kaczmarek I, Reichart B, Beiras A, Schelling G, Kreth S (2010) Substantially altered expression pattern of cannabinoid receptor 2 and activated endocannabinoid system in patients with severe heart failure. J Mol Cell Cardiol 48:1187–1193CrossRefGoogle Scholar
  127. Wheal AJ, Alexander SP, Randall MD (2010) Vasorelaxation to N-oleoylethanolamine in rat isolated arteries: mechanisms of action and modulation via cyclooxygenase activity. Br J Pharmacol 160:701–711CrossRefPubMedPubMedCentralGoogle Scholar
  128. White R, Hiley CR (1998) The actions of some cannabinoid receptor ligands in the rat isolated mesenteric artery. Br J Pharmacol 125:533–541CrossRefPubMedPubMedCentralGoogle Scholar
  129. Wilker S, Pfeiffer A, Elbert T, Ovuga E, Karabatsiakis A, Krumbholz A, Thieme D, Schelling G, Kolassa IT (2016) Endocannabinoid concentrations in hair are associated with PTSD symptom severity. Psychoneuroendocrinology 67:198–206CrossRefGoogle Scholar
  130. Yi B, Nichiporuk I, Nicolas M, Schneider S, Feuerecker M, Vassilieva G, Thieme D, Schelling G, Choukèr A (2016) Reductions in circulating endocannabinoid 2-arachidonoylglycerol levels in healthy human subjects exposed to chronic stressors. Prog Neuropsychopharmacol Biol Psychiatry 67:92–97Google Scholar
  131. Zona LC, Fry BR, LaLonde JA, Cromwell HC (2017) Effects of anandamide administration on components of reward processing during free choice. Pharmacol Biochem Behav 158:14–21Google Scholar
  132. Zhang X, Maor Y, Wang JF, Kunos G, Groopman JE (2010) Endocannabinoid-like N-arachidonoyl serine is a novel pro-angiogenic mediator. Br J Pharmacol 160:1583–1594CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of AnaesthesiologyHospital of the Ludwig-Maximilians-University (LMU)MunichGermany
  2. 2.Department of Cardiac SurgerySemmelweis UniversityBudapestHungary

Personalised recommendations