Advertisement

Using Bankruptcy Rules to Allocate CO2 Emission Permits

  • Raja TrabelsiEmail author
  • Stefano Moretti
  • Saoussen Krichen
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 277)

Abstract

The global growth of technologies and production affects the climate through emissions of greenhouse gases. The total amount of countries’ demands of CO2 emissions permits is higher than what the planet can sustain. This situation can be considered as a bankruptcy problem, where the sum of players’ claims exceeds the endowment of the resource. In this paper, we use an approach based on bankruptcy solutions (in particular, on the Weighted Constrained Equal Awards rule) in order to propose a more efficient and fair allocation protocol for sharing CO2 emissions permits among the EU-28 countries.

Keywords

Bankruptcy situations Weighted Constrained Equal Awards CO2 emissions Cooperative games 

References

  1. 1.
    Berk, M.M., den Elzen, M.G.: Options for differentiation of future commitments in climate policy: how to realise timely participation to meet stringent climate goals? Clim. Policy 1(4), 465–480 (2001)CrossRefGoogle Scholar
  2. 2.
    Carraro, C., Eyckmans, J., Finus, M.: Optimal transfers and participation decisions in international environmental agreements. Rev. Int. Organ. 1(4), 379–396 (2006)CrossRefGoogle Scholar
  3. 3.
    Casas-M\(\acute{{\rm w}}\)ndez, B., Fragnelli, V., García-Jurado, I.: Weighted bankruptcy rules and the museum pass problem. Eur. J. Oper. Res. 125(1), 161–168 (2011)Google Scholar
  4. 4.
    Eyckmans, J., Tulkens, H.: Simulating coalitionally stable burden sharing agreements for the climate change problem. In: Chander, P., Drèze, J., Lovell, C.K., Mintz, J. (eds.) Public Goods, Environmental Externalities and Fiscal Competition, pp. 218–249. Springer, Boston (2006).  https://doi.org/10.1007/978-0-387-25534-7_13CrossRefGoogle Scholar
  5. 5.
    Filar, J.A., Gaertner, P.S.: A regional allocation of world CO2 emission reductions. Math. Comput. Simul. 43(3–6), 269–275 (1997)CrossRefGoogle Scholar
  6. 6.
    Giménez-Gómez, J.M., Teixidó-Figueras, J., Vilella, C.: The global carbon budget: a conflicting claims problem. Clim. Change 136(3–4), 693–703 (2016)CrossRefGoogle Scholar
  7. 7.
    Gomes, E.G., Lins, M.E.: Modelling undesirable outputs with zero sum gains data envelopment analysis models. J. Oper. Res. Soc. 59(5), 616–623 (2008)CrossRefGoogle Scholar
  8. 8.
    Gutiérrez, E., Llorca, N., Sánchez-Soriano, J., Mosquera, M.: Sustainable allocation of greenhouse gas emission permits for firms with Leontief technologies. Eur. J. Oper. Res. 269(1), 5–15 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Grubb, M.: The Greenhouse Effect: Negotiating Targets, p. 60. Royal Institute of International Affairs, London (1989)Google Scholar
  10. 10.
    Mianabadi, H., Mostert, E., Pande, S., van de Giesen, N.: Weighted bankruptcy rules and transboundary water resources allocation. Water Resour. Manage. 29(7), 2303–2321 (2015)CrossRefGoogle Scholar
  11. 11.
    Mianabadi, H., Mostert, E., Zarghami, M., van de Giesen, N.: A new bankruptcy method for conflict resolution in water resources allocation. J. Environ. Manage. 144, 152–159 (2014)CrossRefGoogle Scholar
  12. 12.
    Moulin, H.: Priority rules and other asymmetric rationing methods. Econometrica 68(3), 643–684 (2000)CrossRefGoogle Scholar
  13. 13.
    O’Neill, B.: A problem of rights arbitration from the Talmud. Math. Soc. Sci. 2(4), 345–371 (1982)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rose, A., Stevens, B., Edmonds, J., Wise, M.: International equity and differentiation in global warming policy. Environ. Resour. Econ. 12(1), 25–51 (1998)CrossRefGoogle Scholar
  15. 15.
    Schmidt, R.C., Heitzig, J.: Carbon leakage: grandfathering as an incentive device to avert firm relocation. J. Environ. Econ. Manage. 67(2), 209–223 (2014)CrossRefGoogle Scholar
  16. 16.
    Thomson, W.: Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey. Math. Soc. Sci. 45(3), 249–297 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Welsch, H.: A CO2 agreement proposal with flexible quotas. Energy Policy 21(7), 748–756 (1993)CrossRefGoogle Scholar
  18. 18.
    Wood, P.J.: Climate change and game theory. Ann. New York Acad. Sci. 1219(1), 153–170 (2011)CrossRefGoogle Scholar
  19. 19.
    Zarezadeh, M., Mirchi, A., Read, L., Madani, K.: Ten bankruptcy methods for resolving natural resource allocation conflicts. Water Diplomacy Action: Conting. Approach. Manag. Complex Water Probl. 1, 37 (2017)Google Scholar
  20. 20.
    Zhu-Gang, J., Wen-Jia, C., Can, W.: Simulation of climate negotiation strategies between China and the US based on game theory. Adv. Clim. Change Res. 5(1), 34–40 (2014)CrossRefGoogle Scholar
  21. 21.
    Zhou, P., Wang, M.: Carbon dioxide emissions allocation: a review. Ecol. Econ. 125, 47–59 (2016)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Raja Trabelsi
    • 1
    • 2
    • 3
    Email author
  • Stefano Moretti
    • 2
  • Saoussen Krichen
    • 3
  1. 1.LAMSADE and LARODECParisFrance
  2. 2.Universite Paris-Dauphine, PSL Research University, CNRS, LAMSADEParis Cedex 16France
  3. 3.LARODEC, Institut Superieur de Gestion de TunisUniversity of TunisTunisTunisia

Personalised recommendations