Advertisement

Near-Infrared Reflectance Imaging of Caries Lesions

  • Daniel FriedEmail author
Chapter

Abstract

Dental enamel becomes increasingly transparent with increasing wavelength, with minimum scattering and absorption near 1300 nm. Due to the higher wavelength of NIR, there is less light scattering in dental enamel and penetration of light 30 times more than light in the visible range. This allows for better contrast between sound enamel and demineralized (carious) enamel. NIR reflectance at wavelengths coincident with higher water absorption produced the greatest range of lesion contrast values and the contrast increased linearly with increasing lesion depth and severity. NIR can distinguish stains from demineralization at higher wavelengths, as signficcant advantage over other methods. NIR is a method more suitable for caries screening.

Keywords

Near-IR imaging Caries detection Transillumination Reflectance Proximal lesions Occlusal lesions 

References

  1. 1.
    Simon JC, Lucas SA, Lee RC, Staninec M, Tom H, Chan KH, et al. Near-IR transillumination and reflectance imaging at 1300-nm and 1500–1700-nm for in vivo caries detection. Lasers Surg Med. 2016;48(6):828–36.CrossRefGoogle Scholar
  2. 2.
    Fried D, Glena RE, Featherstone JD, Seka W. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths. Appl Opt. 1995;34(7):1278–85.CrossRefGoogle Scholar
  3. 3.
    Jones RS, Fried D, editors. Attenuation of 1310-nm and 1550-nm laser light through sound dental enamel. Lasers in dentistry VIII Proc SPIE, vol. 4610. San Jose; 2002. p. 187–90.Google Scholar
  4. 4.
    Hale GM, Querry MR. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl Opt. 1973;12:555–63.CrossRefGoogle Scholar
  5. 5.
    Darling CL, Huynh GD, Fried D. Light scattering properties of natural and artificially demineralized dental enamel at 1310-nm. J Biomed Opt. 2006;11(3):34023.CrossRefGoogle Scholar
  6. 6.
    Jones RS, Huynh GD, Jones GC, Fried D. Near-IR transillumination at 1310-nm for the imaging of early dental caries. Opt Express. 2003;11(18):2259–65.CrossRefGoogle Scholar
  7. 7.
    Jones G, Jones RS, Fried D, editors. Transillumination of interproximal caries lesions with 830-nm light. Lasers in dentistry X SPIE, vol. 5313. San Jose; 2004. p. 17–22.Google Scholar
  8. 8.
    Buhler C, Ngaotheppitak P, Fried D. Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm. Opt Express. 2005;13(2):573–82.CrossRefGoogle Scholar
  9. 9.
    Staninec M, Lee C, Darling CL, Fried D. In vivo near-IR imaging of approximal dental decay at 1,310 nm. Lasers Surg Med. 2010;42(4):292–8.CrossRefGoogle Scholar
  10. 10.
    Fried D, Featherstone JDB, Darling CL, Jones RS, Ngaotheppitak P, Buehler CM. Early caries imaging and monitoring with near-IR light. Dent Clin North Am. 2005;49(4):771–94.CrossRefGoogle Scholar
  11. 11.
    Hirasuna K, Fried D, Darling CL. Near-IR imaging of developmental defects in dental enamel. J Biomed Opt. 2008;13(4):044011.CrossRefGoogle Scholar
  12. 12.
    Lee C, Lee D, Darling CL, Fried D. Nondestructive assessment of the severity of occlusal caries lesions with near-infrared imaging at 1310 nm. J Biomed Opt. 2010;15(4):047011.CrossRefGoogle Scholar
  13. 13.
    Karlsson L, Maia AMA, Kyotoku BBC, Tranaeus S, Gomes ASL, Margulis W. Near-infrared transillumination of teeth: measurement of a system performance. J Biomed Opt. 2010;15(3):036001–8.CrossRefGoogle Scholar
  14. 14.
    Zakian C, Pretty I, Ellwood R. Near-infrared hyperspectral imaging of teeth for dental caries detection. J Biomed Opt. 2009;14(6):064047.CrossRefGoogle Scholar
  15. 15.
    Almaz EC, Simon JC, Fried D, Darling CL, editors. Influence of stains on lesion contrast in the pits and fissures of tooth occlusal surfaces from 800–1600-nm. Lasers in dentistry XXII Proc SPIE, vol. 96920X; 2016. p. 1–6.Google Scholar
  16. 16.
    Chung S, Fried D, Staninec M, Darling CL. Multispectral near-IR reflectance and transillumination imaging of teeth. Biomed Opt Express. 2011;2(10):2804–14.CrossRefGoogle Scholar
  17. 17.
    Peers A, Hill FJ, Mitropoulos CM, Holloway PJ. Validity and reproducibility of clinical examination, fibre-optic transillumination, and bite-wing radiology for the diagnosis of small approximal carious lesions. Caries Res. 1993;27:307–11.CrossRefGoogle Scholar
  18. 18.
    Pine CM, ten Bosch JJ. Dynamics of and diagnostic methods for detecting small carious lesions. Caries Res. 1996;30(6):381–8.CrossRefGoogle Scholar
  19. 19.
    Purdell-Lewis DJ, Pot T. A comparison of radiographic and fibre-optic diagnoses of approximal caries lesions. J Dent. 1974;2(4):143–8.CrossRefGoogle Scholar
  20. 20.
    Vaarkamp J, ten Bosch JJ, Verdonschot EH, Bronkhoorst EM. The real performance of bitewing radiography and fiber-optic transillumination in approximal caries diagnosis. J Dent Res. 2000;79(10):1747–51.CrossRefGoogle Scholar
  21. 21.
    Stephen KW, Russell JI, Creanor SL, Burchell CK. Comparison of fibre optic transillumination with clinical and radiographic caries diagnosis. Community Dent Oral Epidemiol. 1987;15(2):90–4.CrossRefGoogle Scholar
  22. 22.
    Staninec M, Douglas SM, Darling CL, Chan K, Kang H, Lee RC, et al. Nondestructive clinical assessment of occlusal caries lesions using near-IR imaging methods. Lasers Surg Med. 2011;43(10):951–9.CrossRefGoogle Scholar
  23. 23.
    Kuhnisch J, Sochtig F, Pitchika V, Laubender R, Neuhaus KW, Lussi A, et al. In vivo validation of near-infrared light transillumination for interproximal dentin caries detection. Clin Oral Investig. 2015;20(4):821–9.CrossRefGoogle Scholar
  24. 24.
    Sochtig F, Hickel R, Kuhnisch J. Caries detection and diagnostics with near-infrared light transillumination: clinical experiences. Quintessence Int. 2014;45(6):531–8.PubMedGoogle Scholar
  25. 25.
    Angmar-Mansson B, ten Bosch JJ. Optical methods for the detection and quantification of caries. Adv Dent Res. 1987;1(1):14–20.CrossRefGoogle Scholar
  26. 26.
    ten Bosch JJ, van der Mei HC, Borsboom PCF. Optical monitor of in vitro caries. Caries Res. 1984;18:540–7.CrossRefGoogle Scholar
  27. 27.
    Benson PE, Ali Shah A, Robert Willmot D. Polarized versus nonpolarized digital images for the measurement of demineralization surrounding orthodontic brackets. Angle Orthod. 2008;78(2):288–93.CrossRefGoogle Scholar
  28. 28.
    Everett MJ, Colston BW, Sathyam US, Silva LBD, Fried D, Featherstone JDB, editors. Non-invasive diagnosis of early caries with polarization sensitive optical coherence tomography (PS-OCT). Lasers in dentistry V SPIE, vol. 3593. San Jose; 1999. p. 177–83.Google Scholar
  29. 29.
    Fried D, Xie J, Shafi S, Featherstone JDB, Breunig T, Lee CQ. Early detection of dental caries and lesion progression with polarization sensitive optical coherence tomography. J Biomed Opt. 2002;7(4):618–27.CrossRefGoogle Scholar
  30. 30.
    Wu J, Fried D. High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at lambda = 1310-nm. Lasers Surg Med. 2009;41(3):208–13.CrossRefGoogle Scholar
  31. 31.
    Fried WA, Chan KH, Fried D, Darling CL. High contrast reflectance imaging of simulated lesions on tooth occlusal surfaces at near-IR wavelengths. Lasers Surg Med. 2013;45(8):533–41.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhang L, Nelson LY, Seibel EJ. Spectrally enhanced imaging of occlusal surfaces and artificial shallow enamel erosions with a scanning fiber endoscope. J Biomed Opt. 2012;17(7):076019.CrossRefGoogle Scholar
  33. 33.
    Simon JC, Chan KH, Darling CL, Fried D. Multispectral near-IR reflectance imaging of simulated early occlusal lesions: variation of lesion contrast with lesion depth and severity. Lasers Surg Med. 2014;46(3):203–15.CrossRefGoogle Scholar
  34. 34.
    Jablonski-Momeni A, Jablonski B, Lippe N. Clinical performance of the near-infrared imaging system VistaCam iX Proxi for detection of approximal enamel lesions. BDJ Open. 2017;3:17012.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental SciencesUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations