Advertisement

Estimation of Surface Integrity Parameters in Electrical Discharge Machining (EDM) Process-A Review

  • Mahendra U. Gaikwad
  • Krishnamoorthy A
  • Vijaykumar S. Jatti
Conference paper

Abstract

The quality of machined surface is important from performance point of view and for deciding the life of the machined components. In EDM process, the quality of machined surface is related with the surface integrity parameters such as surface finish, surface topology, micro cracks, layer formation, and residual and thermal stresses. This paper deals with review of various surface integrity parameters and estimation of these parameters by experimental and numerical methods. In the first part of this paper surface integrity parameters have been reviewed for different experimental conditions such as machining conditions (discharge current, duty factor, pulse on/off, dielectric fluid), experimental techniques (scanning electron microscopy, atomic force microscopy) and in second part the numerical estimation (using 2D and 3D models, FEM analysis) has been reviewed. In numerical estimation the frequency graph has been plotted which indicates that few researchers have contributed to surface integrity related to surface roughness, tool wear rate (TWR), debris formation and Layer formation parameters. Based on the previous literature it was concluded that analysis of EDM surface integrity parameters by numerical (FEM-ANSYS software) method is the best tool to predict the solution. Hence FEM analysis need to be implemented which saves the time, avoids material wastage and increases the productivity of any firm.

Keywords

Surface integrity Surface roughness White layer thickness Heat affected zone 

References

  1. 1.
    Khan AA (2008) Electrode wear and material removal rate during EDM of aluminum and mild steel using copper and brass electrodes. J Mater Process Technol 39:482–487Google Scholar
  2. 2.
    Baraskar SS, Banwait SS, Laroiya SC (2013) Multiobjective optimization of electrical discharge machining process using a hybrid method. Mater Manuf Process 28:348–354CrossRefGoogle Scholar
  3. 3.
    Mohammadi A, Tehrani AF, Emanian E, Karimi D (2008) A new approach to surface roughness and roundness improvement in wire electrical discharge turning based on statistical analysis. Int J Adv Manuf Technol 64–73(2008):39Google Scholar
  4. 4.
    Tripathy S, Tripathy DK (2017) Optimization of process parameters and investigation on surface characteristics during EDM and powder mixed EDM. Innov Design Dev Pract Aerospace Automotive Eng:385–391. Springer SingaporeGoogle Scholar
  5. 5.
    Dąbrowski L, Świercz R, Zawora J (2011) Struktura geometryczna powierzchni po obróbce elektroerozyjnej elektrodą grafitową i miedzianą – porównanie. Inżynieria Maszyn 16:32–39Google Scholar
  6. 6.
    Oniszczuk D, Świercz R (2012) An investigation into the impact of electrical pulse character on surface texture in the EDM and WEDM process. Adv Manuf Sci Technol 36(3):43–53Google Scholar
  7. 7.
    Chakraborty S, Dey V, Ghosh SK (2015) A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics. Precis Eng 40:1–6CrossRefGoogle Scholar
  8. 8.
    Boujelbene M, Bayraktar E, Tebni W, Salem SB (2009) Influence of machining parameters on surface integrity in electrical discharge machining. Int J Mater Sci Eng 37:110–116Google Scholar
  9. 9.
    Navas VG, Ferreres I, Maranon JA, Rosales CG, Sevillano GJ (2008) Electro discharge machining (EDM) versus hard turning and grinding-comparison of residual stresses and surface integrity generated in AISI 01 tool steel. J Mater Process Technol 195:186–194CrossRefGoogle Scholar
  10. 10.
    Klocke F, Schneider S, Ehle L, Meyer H, Hensgen L, Klink A (2016) Investigations on surface integrity of heat treated 42CrMo4 (AISI 4140) processed by sinking EDM. Proc CIRP 42:580–585CrossRefGoogle Scholar
  11. 11.
    Sharma P, Tripathy A, Sahoo N (2018) Evaluation of surface integrity of WEDM processed inconel 718 for jet engine application. IOP Conf Series: Mater Sci Eng 323:012018CrossRefGoogle Scholar
  12. 12.
    Lui JF, Li L, Guo YB (2014) Surface integrity evolution from main cut to finish trim cut in W-EDM of shape memory alloy. Proc CIRP 13:137–142CrossRefGoogle Scholar
  13. 13.
    Aas KL (2004) Relations between parameter setting, process efficiency and surface integrity in EDM of a Nickel base alloy. Int J Electr Mach 9(2):7–35Google Scholar
  14. 14.
    Żyra A, Bogucki R, Skoczypiec S (2017) Austenitic steel surface integrity after EDM in different dielectric liquids. Tech Trans 12:231–242Google Scholar
  15. 15.
    Goswani A, Kumar J (2014) Optimization in wire-cut EDM of Nimonic -80Ausing taughi’s approach and utility concept. Int J Eng Sci Technol 17:173–184CrossRefGoogle Scholar
  16. 16.
    Guu YH (2005) AFM surface imagining of AISI D2 tool steel machined by the EDM process. J Appl Surf Sci 242:245–250CrossRefGoogle Scholar
  17. 17.
    Welling D (2014) Results of surface integrity and fatigue study of wire-EDM compared to Broachig and grinding for demanding jet engine components made of Inconel 718. 2nd CIRP Conf Surf Integr (CSI) 13:339–344Google Scholar
  18. 18.
    Chen SL, Yan BH, Huang FY (1999) Influence of kerosene and distilled water on the electric discharge machining characteristics of Ti-6Al-4V. J Mater Process Technol 87:107–111CrossRefGoogle Scholar
  19. 19.
    Liu JF, Guo YB (2016) Residual stress modeling in Electric Discharge Machining (EDM) by incorporating massive random discharges. 3rd CIRP Conference on Surface Integrity, Procedia CIRP 45:299–302CrossRefGoogle Scholar
  20. 20.
    Kozak J, Rozenek M, Dabrowski L (2003) Study of electrical discharge machining using powder suspended working media. J Eng Manuf 217(11):1597–1602CrossRefGoogle Scholar
  21. 21.
    Hascalik A, Caydas U (2007) J Mater Process Technol 190:173CrossRefGoogle Scholar
  22. 22.
    Hosseini Kalajahi M, Rash Ahmadi S, Nadimi Bavil Oliaei S (2013) Experimental and finite element analysis of EDM process and investigation of material removal rate by response surface methodology. Int J Adv Manuf Technol 69:687–704CrossRefGoogle Scholar
  23. 23.
    Arooj S, Shah M, Sadiq S, Jaffery SHI, Khushnood S (2014) Effect of current in the EDM machining of aluminum 6061 T6 and its effect on the surface morphology. Arab J Sci Eng 39:4187–4199CrossRefGoogle Scholar
  24. 24.
    Rao PS, Ramji K, Satyanarayana B (2017) Surface integrity of wire EDMed aluminum alloy: A comprehensive experimental investigation. J King Saud Univ – Eng Sci 30:368–376Google Scholar
  25. 25.
    Mehmood S, Shah M, Pasha RA, Khushmood S, Sultan A (2017) Influence of electrical discharge on fatigue strength of Aluminum alloy under finish machining. J Chin Inst Eng 4(2):118–125CrossRefGoogle Scholar
  26. 26.
    Gosavi AA, Gaikwad PAB (2016) Predicting optimized EDM machining parameter through thermo mechanical analysis. J Mech Civil Eng 13:71–85CrossRefGoogle Scholar
  27. 27.
    Kansal HK, Singh S, Kumar P (2008) Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method. Int J Math Comp Model 47:1217–1237CrossRefGoogle Scholar
  28. 28.
    Pradhan MK (2010) Estimation of effect of process parameters on temperature, thermal and residual stresses in EDMed AISI D2 steel components. 2nd International conference on production and industrial engineering CPIE 657-661Google Scholar
  29. 29.
    Shabgard M, Oliaei S, Seyedzavvar M, Brahimi A (2011) Experimental investigation and 3D finite element prediction of the white layer thickness, heat affected zone, and surface roughness in EDM process. J Mech Sci Technol 25:3173–3183CrossRefGoogle Scholar
  30. 30.
    Bao-cheng X, Wang Y-k, Wang Z-l, Wang-sheng Z (2011) Numerical simulation of titanium alloy machining in electric discharge machining process. Int J Trans Nonferrous Mater Soc China 21:434–439CrossRefGoogle Scholar
  31. 31.
    Vishwakarma UK, Dvivedi A, Kuma P (2012) FEA modeling of material removal rate in electrical discharge machining of Al6063/SiC composites. Int J Mech Aerosp Eng 6:398–403Google Scholar
  32. 32.
    Shabgarda M, Ahmadi R, Seyedzavvar M, Samad Nadimi Bavil OS (2013) Mathematical and numerical modeling of the effect of input-parameters on the flushing efficiency of plasma channel in EDM process. Int J Mach Tool Manu 65:79–87CrossRefGoogle Scholar
  33. 33.
    Vignesh Shanmugam S, Krishnaraj V, Jagdeesh K (2013) A, Varun Kumar S, Subash S, Numerical Modeling of Electro-Discharge Machining Process using Moving Mesh Feature, International conference on design and manufacturing. Proc Eng 64:747–756CrossRefGoogle Scholar
  34. 34.
    Choudhary A, Pradhan MK (2014) Finite element analysis of electro discharge machining using ansys. In: Proceedings of 1st international conference on mechanical engineering: emerging trends for sustainability, pp 18–26Google Scholar
  35. 35.
    Biswas CK, Pradhan MK (2012) FEM of Residual stress of EDMed Surfaces. Adv Mater Res 872:383–390Google Scholar
  36. 36.
    Wang J, Han F (2014) Simulation model of debris and bubble movement in electrode jump of electrical discharge machining. Int J Adv Manuf Technol 74:591–598CrossRefGoogle Scholar
  37. 37.
    Zhang Y, Liu Y, Shen Y, Li Z, Ji R, Wang F (2013) A new method of investigation the characteristic of the heat flux of EDM plasma. The seventeenth CIRP conference on electro physical and chemical machining (ISEM). Proc CIRP 6:450–455CrossRefGoogle Scholar
  38. 38.
    Jatti VS, Bagane S (2017) Thermo-electric modeling, simulation and experimental validation of powder mixed electrical discharge machining (PMEDM) of Be Cu alloys. Alex Eng J 1–11Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mahendra U. Gaikwad
    • 1
  • Krishnamoorthy A
    • 1
  • Vijaykumar S. Jatti
    • 2
  1. 1.Sathyabama Institute of Science and TechnologyChennaiIndia
  2. 2.D. Y. Patil College of Engineering, AkurdiSavitribai Phule Pune UniversityPuneIndia

Personalised recommendations