Skip to main content

High-Performance Potentiostatic Electro-Polymerized Polypyrrole (PPy) Electrode for Electrochemical Performance

  • Conference paper
  • First Online:

Abstract

Polypyrrole (PPy) electrode was electro-polymerized by potentiostatic electrode position method on stainless steel substrate for super capacitor application. The morphology and elemental analysis of polypyrrole electrode were studied using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The electrochemical properties of PPy have been examined using cyclic voltammetry, galvanostatic charge-discharge, cyclic stability and electrochemical impedance spectroscopy measurements in 1 M H2SO4 electrolytes. A high specific capacitance of 531 Fg−1 was obtained within the potential range of −0.5–0.7 V in 1 M H2SO4 electrolyte. Additionally, PPy electrode exhibited high discharge/charge efficiency of 82%. The present study signifies the successful application of polypyrrole thin films as a supercapacitor electrode.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Winter M, Brodd RJ (2004) What are batteries, fuel cells and supercapacitors. Chem Rev 104:4245–4269

    Article  Google Scholar 

  2. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. J Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  3. Kaskhedikar NA, Maier J (2009) Lithium storage in carbon nanostructures. J Adv Mater 21:2664–2680

    Article  Google Scholar 

  4. An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. J Adv Funct Mater 11:387–392

    Article  Google Scholar 

  5. Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. J Chem Mater 12:608–622

    Article  Google Scholar 

  6. Novak P, Muller K, Santana SV, Haas O (1997) Electrochemically active polymers for rechargeable batteries. J Chem Rev 97:207–282

    Article  Google Scholar 

  7. Gerard M, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. J Biosens Bioelectron 17:345–359

    Article  Google Scholar 

  8. Sadki S, Schottland P, Brodie N, Sabouraud G (2000) The mechanisms of pyrrole electropolymerization. J Chem Soc Rev 29:283–293

    Article  Google Scholar 

  9. Hashmi SA, Kumar A, Tripathi SK (2005) Investigations on electrochemical supercapacitors using polypyrrole redox electrodes and PMMA based gel electrolytes. J Eur Polymer 411:373–1379

    Google Scholar 

  10. Wang J, Xu Y, Du X (2010) High charge/discharge rate polypyrrole films prepared by pulse current polymerization. J Synth Metal 160:1826–1831

    Article  Google Scholar 

  11. Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sources 153:413–418

    Article  Google Scholar 

  12. Frackowiak E, Jurewicz K, Delpeux S (2001) Nanotubular materials for supercapacitors. J Power Sources 97–98:822

    Article  Google Scholar 

  13. Wang J, Xu Y, Du X (2011) Toward a high specific power and high stability polypyrrole supercapacitors. J Synth Metal 161:1141–1144

    Article  Google Scholar 

  14. Navale YH, Navale ST, Chougule MA, Ingole SM, Stadler FJ, Mane RS, Naushad M, Patil VB (2017) Electrochemical synthesis and potential electrochemical energy storage performance of nodule-type polyaniline. J Colloid Interface Sci 487:458–464

    Article  Google Scholar 

  15. More PD, Jadhav PR, Ingole SM, Navale YH, Patil VB (2017) Preparation, structural and electrochemical supercapacitive properties of sprayed manganese oxide film electrode. J Mater Sci Mater Electron 28:707–714

    Article  Google Scholar 

  16. Ingole SM, Navale ST, Navale YH, Stadler FJ, Mane RS, Patil VB (2017) Galvanostatically electroplated MnO2 nanoplate-type electrode for potential electrochemical pseudocapacitor application. J Solid State Electrochem 21:1817–1826

    Article  Google Scholar 

  17. Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Beguin F (2002) Enhanced capacitance of carbon nanotubes through chemical activation. J Chem Phys Lett 361:35–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ingole, S.M., Navale, Y.H., Jadhav, Y.M., Salunkhe, A.S., Patil, V.B. (2020). High-Performance Potentiostatic Electro-Polymerized Polypyrrole (PPy) Electrode for Electrochemical Performance. In: Pawar, P., Ronge, B., Balasubramaniam, R., Vibhute, A., Apte, S. (eds) Techno-Societal 2018 . Springer, Cham. https://doi.org/10.1007/978-3-030-16962-6_33

Download citation

Publish with us

Policies and ethics