Advertisement

NO2 Gas Sensor Based on ZnO Nanorods Synthesised by Thermal Evaporation Method

  • Y. H. Navale
  • S. M. Ingole
  • R. N. Dhanawade
  • A. S. Salunkhe
  • V. B. Patil
Conference paper

Abstract

Nanorods (NRs) of Zinc Oxide have been synthesized by thermal evaporation technique followed by annealing in argon gas atmosphere. As-prepared ZnO NRs are cleaver to sense a toxic nitrogen dioxide gas. ZnO NRs are characterized for structural and surface morphological studies through X-ray diffraction and scanning electron microscopy equipments. The crystal structural revelation reveals the configuration of hexagonalwurtzite crystal structure of ZnO. Morphological analysis presents the randomly distributed ZnO NRs over the surface of the glass substrate. The gas sensing cram of ZnO NRs has been carried out systematically by utilizing convention fabricated gas sensing setup towards a different of poisonous gases, ZnO NRs sensor providea highest response of 128% on exposure of 100 ppm NO2at 200 °C as operating temperature along with a very rapid response & recovery time. Moreover, a ZnO NRs sensor acquires tremendous stability, reversibility and marvels reproducibility in gas response also.

Keywords

ZnO Nanorods xrd Sem Nitogen dioxide gas 

Notes

Acknowledgments

Prof. V.B. Patil is thankful to DAE-BRNS, India (scheme no.34/14/21/2015-BRNS) for the financial support.

References

  1. 1.
    Navale YH, Navale ST, Stadler FJ, Ramgir NS, Debnath AK, Gadkari SC, Gupta SK, Aswal DK, Patil VB (2017) Thermally evaporated copper oxidefilms: a view of annealing effect on physical and gas sensing properties. Ceram Int 43:7057–7064CrossRefGoogle Scholar
  2. 2.
    Marquis BT, Vetelino JF (2001) A semiconducting metal oxide sensor array for the detection of NOx and NH3. Sensors Actuators B Chem 77:100–110CrossRefGoogle Scholar
  3. 3.
    Mane AT, Kulkarni SB, Navale ST, Ghanwat AA, Shinde NM, Kim JH, Patil VB (2014) NO2 sensing properties of nanostructured tungsten oxide thin films. Ceram Int 40:16495–16502CrossRefGoogle Scholar
  4. 4.
    Arshak K, Moore E, Lyons GM, Harris J, Clifford S (2004) A review of gas sensors employed in electronic nose applications. Sens Rev 24:181–198CrossRefGoogle Scholar
  5. 5.
    Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2011) Semiconducting metal oxides as sensors for environmentally hazardous gases. Sensors Actuators B Chem 160:580–591CrossRefGoogle Scholar
  6. 6.
    Schaller E, Bosset JO, Escher F (1998) Electronic noses and their application to food. Lebensm Wiss Technol 31:305–316CrossRefGoogle Scholar
  7. 7.
    Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors Actuators B Chem 204:250–272CrossRefGoogle Scholar
  8. 8.
    Dar GN, Umar A, Zaidi SA, Baskuotas S, Hwang SW, Abaker M, Al-Hajry A, Al-Sayari SA (2012) Ultra-high sensitive ammonia chemical sensor based on ZnO nanopencils. Talanta 89:155–161CrossRefGoogle Scholar
  9. 9.
    Navale YH, Navale ST, Galluzzi M, Stadler FJ, Debnath AK, Ramgir NS, Gadkari SC, Gupta SK, Aswal DK, Patil VB (2017) Rapid synthesis strategy of CuO nanocubes for sensitive and selective detection of NO2. J Alloys Compd 708:456–463CrossRefGoogle Scholar
  10. 10.
    Ingole SM, Navale ST, Navale YH, Bandgar DK, Stadler FJ, Mane RS, Ramgir NS, Gupta SK, Aswal DK, Patil VB (2017) Nanostructured tin oxide films: physical synthesis, characterization and gas sensing properties. J Colloid Interface Sci 493:162–170CrossRefGoogle Scholar
  11. 11.
    Bandgar DK, Navale ST, Khuspe GD, Pawar SA, Mulik RN, Patil VB (2014) Novel route for fabrication of nanostructured α-Fe2O3 gas sensor. Mater Sci Semicond Process 17:67–73CrossRefGoogle Scholar
  12. 12.
    Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Surv Jpn 1:63–75CrossRefGoogle Scholar
  13. 13.
    Park S, Sun GJ, Jin C, Kim HW, Lee S, Lee C (2016) Synergistic effects of a combination of Cr2O3-functionalization and UV-irradiation techniques on the ethanol gas sensing performance of ZnO Nanorod gas sensors. ACS Appl Mater Interfaces 8:2805–2811CrossRefGoogle Scholar
  14. 14.
    Zhang H, Yang D, Ji Y, Ma X, Xu J, Que D (2004) Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process. J Phys Chem B 108:3955–3958CrossRefGoogle Scholar
  15. 15.
    Shinde VR, Lokhande CD, Mane RS, Han SH (2005) Hydrophobic and textured ZnO films deposited by chemical bath deposition: annealing effect. Appl Surf Sci 245:407–413CrossRefGoogle Scholar
  16. 16.
    Kim J, Yong K (2011) Mechanism study of ZnO Nanorod-bundle sensors for H2S gas sensing. J Phys Chem C 115:7218–7224CrossRefGoogle Scholar
  17. 17.
    Chen, S., Liu, Y., Shao, C., Mu, R., Lu, Y., Znang, J., Shen, D, . Fan, X.: Structural and optical properties of uniform ZnO nanosheets. Adv Mater 17, 586-589 (2005)CrossRefGoogle Scholar
  18. 18.
    Gao T, Wang TH (2005) Synthesis and properties of multipod-shaped ZnO nanorods for gas- sensor applications. Appl Phys A Mater Sci Process 80:1451–1454CrossRefGoogle Scholar
  19. 19.
    Navale ST, Bandgar DK, Nalage SR, Khuspe GD, Chougule MA, Kolekar YD, Sen S, Patil VB (2013) Synthesis of Fe2O3 nanoparticles for nitrogen dioxide gas sensing applications. Ceram Int 39:6453–6460CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Y. H. Navale
    • 1
  • S. M. Ingole
    • 1
  • R. N. Dhanawade
    • 1
  • A. S. Salunkhe
    • 1
  • V. B. Patil
    • 1
  1. 1.School of Physical SciencesSolapur UniversitySolapurIndia

Personalised recommendations