Evaluation of Enzymatic Extract with Lipase Activity of Yarrowia Lipolytica. An Application of Data Mining for the Food Industry Wastewater Treatment

  • Heidy Posso MendozaEmail author
  • Rosangela Pérez Salinas
  • Arnulfo Tarón Dunoyer
  • Claudia Carvajal Tatis
  • W. B. Morgado-Gamero
  • Margarita Castillo Ramírez
  • Alexander Parody
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 895)


The object of this research was to obtain the Crude Enzymatic Extract (CEE) of Yarrowia lipolytica ATCC 9773, in the medium of 30% Water of Sales (SW) applying a biologically treatment to three different concentrations yeast inoculum food wastewater, collected from cheese and whey production. It was evaluated the behavior of the inoculum in a suitable medium that stimulates lipids biodegradation. The standard liquid-liquid partition method SM 5520 B was used to quantify fat and oil removal for each concentration of yeast, before treatment and post treatment. The Industrial Fat effluent was characterized by physical chemical patterns, and two treatments were evaluated; Treatment 1 consisted of pH 5.0 and treatment 2 with a pH of 6.5, both with the following characteristics; Concentration of inoculum 8% 12% and 16% at 27 °C temperature and evaluation time 32 h. The best results (2.702 mg/L fat and 83% degradation oil) were found to be pH 5.0, 16% concentration and 27 °C, BOD5, and COD decreased by 43.07% and 44.35%, respectively during the 32 h; For pH 6.5, 8% concentration at 32 h and at room temperature, degraded 2.177 mg/L fat and oil (67% degradation); The BOD5, and COD decreased by 37.93% and 39.19%, in the same time span. The treatment at pH 5.0 inoculum concentration of 16% was effective in removing 83% of the volume of fats and oil in the effluent, representing a useful tool for the wastewater treatment.


Crude enzymatic extract Wastewater treatment Biodegradation Yeast inoculum Lipases Yarrowia lipolytica 



This research was supported by grants from Bacteriology Department of Universidad Metropolitana Barranquilla, Colombia.


  1. 1.
    MohdKhairul-Nizam, M.Z.: Bioremediation of oil from domestic wastewater using mixed culture: effects of inoculum concentration and agitation speed [dissertation]. Malaysia: University Pahang Faculty of chemical and Natural Resources Engineering (2008).
  2. 2.
    Abass, O.A., Ahmad, T.J., Suleyman, A.M., Mohamed, I.A.K., Md. Zahangir, A.: Removal of oil and grease as emerging pollutants of concern (EPC) in wastewater stream. Eng. J. 12(4), 161–169 (2011). Scholar
  3. 3.
    Lemus, G.R.: Biodegradation and environmental impact of lipid-rich wastes under aerobic composting conditions [dissertation]. Vancouver: University of British Columbia Department of chemical and Biological Engineering (2003). 10.14288/1.0058966Google Scholar
  4. 4.
    Van Der Walle, N.: Über synthetische Wirkung bakterieller lipasen. Cbl Bakt Parasitenk Inktionskr 70, 369–373 (1927). Scholar
  5. 5.
    Morgado Gamero, W.B., et al.: Concentrations and size distributions of fungal bioaerosols in a municipal landfill. In: Tan, Y., Shi, Y., Tang, Q. (eds.) Data Mining and Big Data. LNCS, vol. 10943, pp. 244–253. Springer, Cham (2018). Scholar
  6. 6.
    Morgado Gamero, W.B., et al.: Hospital admission and risk assessment associated to exposure of fungal bioaerosols at a municipal landfill using statistical models. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A. (eds.) Intelligent Data Engineering and Automated Learning IDEAL 2018. Lecture Notes in Computer Science, vol. 11315. Springer, Cham (2018). Scholar
  7. 7.
    Kempka, A.P., Lipke, N.R., Pinheiro, T.L.F., Menoncin, S., Treichel, H., Freire, D.M.G.: Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation. Bioprocess Biosyst. Eng. 31(2), 119–125 (2008). Scholar
  8. 8.
    Ferrer, P., Montesinos, J.L., Valero, F., Sola, C.: Production of native and recombinant lipases by Candida rugosa. Appl. Biochem. Biotechnol. 95(3), 221–256 (2001). Scholar
  9. 9.
    Contesini, F.J., da Silva, V.C.F., Maciel, R.F., de Lima, R.J., Barros, F.F.C., Carvalho, P.D.: Response surface analysis for the production of an enantioselective lipase from Aspergillus niger by solid state fermentation. J. Microbiol. 47(5), 563–571 (2009). Scholar
  10. 10.
    Colla, L.M., Rizzardi, J., Pinto, M.H., Reinehr, C.O., Bertolin, T.E., Vieira Costa, J.A.: Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses. Bioresour. Technol. 101(21), 8308–8314 (2010). Scholar
  11. 11.
    Burkert, J.F.M., Maugeri, F., Rodrigues, M.I.: Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresour. Technol. 91(1), 77–84 (2004). Scholar
  12. 12.
    Saatci, Y., Arslan, E.I., Konar, V.: Removal of total lipids and fatty acids from sunflower oil factory effluent by UASB reactor. Biores. Technol. 87(3), 269–272 (2001). Scholar
  13. 13.
    Di-Giulio, R.: Indices of oxidative stress as biomarkers for environmental contamination. In: Mayes, M.A., Baeeon, M.B. (eds.) En Aquatic Toxicology and Risk Assesment, vol. 14, pp. 15–31. American Society for Testing and Materials, Philadelphia (1991). Scholar
  14. 14.
    Cirne, D.G., Paloumet, X., Björnsson, L., Alves, M.M., Mattiasson, B.: Anaerobic digestión of lipid-rich waste: Effects of lipid concentration. Renew. Ener. 32(6), 965–975 (2007). Scholar
  15. 15.
    Ayadi, I., Kamoun, O., Trigui-Lahiani, H., et al.: J. Ind. Microbiol. Biotechnol. 43, 901 (2016). Scholar
  16. 16.
    Li, Z.J., Qiao, K., Liu, N., et al.: J. Ind. Microbiol. Biotechnol. 44, 605 (2017). Scholar
  17. 17.
    Kirk, T.K., Schultz, E., Connors, W.J., et al.: Arch. Microbiol. 117, 277 (1978). Scholar
  18. 18.
    Viloria, A., Campo Urbina, M., Gómez Rodríguez, L., Parody Muñoz, A.: Predicting of behavior of escherichia coli resistance to imipenem and meropenem, using a simple mathematical model regression. Indian J. Sci. Technol. 9(46) (2016).
  19. 19.
    Carrero, C., et al.: Effect of vitamin a, zinc and multivitamin supplementation on the nutritional status and retinol serum values in school-age children. In: Tan, Y., Shi, Y., Tang, Q. (eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol. 10943. Springer, Cham (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Heidy Posso Mendoza
    • 1
    Email author
  • Rosangela Pérez Salinas
    • 1
  • Arnulfo Tarón Dunoyer
    • 1
  • Claudia Carvajal Tatis
    • 2
  • W. B. Morgado-Gamero
    • 2
  • Margarita Castillo Ramírez
    • 3
  • Alexander Parody
    • 4
  1. 1.Department of BacteriologyUniversidad MetropolitanaBarranquillaColombia
  2. 2.Deparment of Exact and Natural SciencesUniversidad de la CostaBarranquillaColombia
  3. 3.Barranquilla Air Quality Monitoring Network EPA-Barranquilla VerdeBarranquillaColombia
  4. 4.Engineering FacultyUniversidad LibreBarranquillaColombia

Personalised recommendations