Advertisement

Nature-Inspired Algorithms

  • Xin-She Yang
  • Xing-Shi He
Chapter
Part of the SpringerBriefs in Optimization book series (BRIEFSOPTI)

Abstract

The literature of nature-inspired algorithms and swarm intelligence is expanding rapidly, here we will introduce some of the most recent and widely used nature-inspired optimization algorithms.

References

  1. 1.
    Abdelaziz AY, Ali ES, Abd Elazim SM (2016) Combined economic and emission dispatch solution using flower pollination algorithm. Int J Electr Power Energy Syst 80(2):264–274CrossRefGoogle Scholar
  2. 2.
    Alam DF, Yousri DA, Eteiba MB (2015) Flower pollination algorithm based solar PV parameter estimation. Energy Convers Manag 101(2):410–422CrossRefGoogle Scholar
  3. 3.
    Allan M (1977) Darwin and his flowers. Faber & Faber, LondonGoogle Scholar
  4. 4.
    Altringham JD (1998) Bats: biology and behaviour. Oxford University Press, OxfordGoogle Scholar
  5. 5.
    Alyasseri ZAA, Khader AT, Al-Betar MA, Awadallah MA, Yang XS (2017) Variants of the flower pollination algorithm: a review. In: Yang X-S (ed) Nature-inspired algorithms and applied optimization. Springer, Cham, pp 91–119Google Scholar
  6. 9.
    Beer D (2016) The social power of algorithms. Inf Commun Soc 20(1):1–13CrossRefGoogle Scholar
  7. 10.
    Bekdas G, Nigdeli SM, Yang XS (2015) Sizing optimization of truss structures using flower pollination algorithm. Appl Soft Comput 37(1):322–331CrossRefGoogle Scholar
  8. 11.
    Bekdas G, Nigdeli SM, Yang XS (2018) A novel bat algorithm based optimum tuning of mass dampers for improving the seismic safety of structures. Eng Struct 159(1):89–98.CrossRefGoogle Scholar
  9. 12.
    Bell WJ (1991) Searching behaviour: the behavioural ecology of finding resources. Chapman & Hall, LondonGoogle Scholar
  10. 13.
    Berlinski D (2001) The advent of the algorithm: the 300-year journey from an idea to the computer. Harvest Book, New YorkGoogle Scholar
  11. 16.
    Bolton B (1995) A new general catalogue of the ants of the world. Harvard University Press, CambridgeGoogle Scholar
  12. 21.
    Chabert JL (1999) A history of algorithms: from the pebble to the microchip. Springer, HeidelbergCrossRefGoogle Scholar
  13. 24.
    Chen S, Peng G-H, He XS, Yang XS (2018) Global convergence analysis of the bat algorithm using a Markovian framework and dynamic system theory. Expert Syst Appl 114(1):173–182CrossRefGoogle Scholar
  14. 27.
    Copeland BJ (2004) The essential Turing. Oxford University Press, OxfordzbMATHGoogle Scholar
  15. 29.
    Davies NB (2011) Cuckoo adaptations: trickery and tuning. J Zool 284(1):1–14CrossRefGoogle Scholar
  16. 31.
    Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, ItalyGoogle Scholar
  17. 33.
    Engelbrecht AP (2005) Fundamentals of computational swarm intelligence. Wiley, HobokenGoogle Scholar
  18. 34.
    Fisher L (2009) The perfect swarm: the science of complexity in everyday life. Basic Books, New YorkGoogle Scholar
  19. 36.
    Fister I, Yang XS, Brest J, Fister I Jr (2013) Modified firefly algorithm using quaternion representation. Expert Syst Appl 40(18):7220–7230CrossRefGoogle Scholar
  20. 37.
    Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, New YorkzbMATHGoogle Scholar
  21. 40.
    Gandomi AH, Yang XS (2014) Chaotic bat algorithm. J Comput Sci 5(2):224–232MathSciNetCrossRefGoogle Scholar
  22. 41.
    Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35CrossRefGoogle Scholar
  23. 42.
    Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68CrossRefGoogle Scholar
  24. 44.
    Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549MathSciNetzbMATHCrossRefGoogle Scholar
  25. 45.
    Glover BJ (2007) Understanding flowers and flowering: an integrated approach. Oxford University Press, OxfordCrossRefGoogle Scholar
  26. 46.
    Goldberg DE (1989) Genetic algorithms in search, optimisation and machine learning. Addison Wesley, ReadingzbMATHGoogle Scholar
  27. 48.
    He XS, Yang XS, Karamanoglu M, Zhao YX (2017) Global convergence analysis of the flower pollination algorithm: a discrete-time Markov chain approach. Proc Comput Sci 108(1):1354–1363CrossRefGoogle Scholar
  28. 49.
    Holland J (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann ArborGoogle Scholar
  29. 53.
    Joyce T, Herrmann JM (2018) A review of no free lunch theorems, and their implications for metaheuristic optimisation. In: Yang XS (ed) Nature-inspired algorithms and applied optimization. Springer, Berlin, pp 27–52CrossRefGoogle Scholar
  30. 54.
    Judea P (1984) Heuristics. Addison-Wesley, New YorkGoogle Scholar
  31. 55.
    Karaboga D (2005) An idea based on honeybee swarm for numerical optimization. Technical Report, Erciyes University, TurkeyGoogle Scholar
  32. 57.
    Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Piscataway, pp 1942–1948Google Scholar
  33. 58.
    Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Academic Press, LondonGoogle Scholar
  34. 59.
    Kirkpatrick S, Gellat CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680MathSciNetzbMATHCrossRefGoogle Scholar
  35. 60.
    Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, CambridgezbMATHGoogle Scholar
  36. 63.
    Lewis SM, Cratsley CK (2008) Flash signal evolution, mate choice and predation in fireflies. Annu Rev Entomol 53(2):293–321CrossRefGoogle Scholar
  37. 64.
    Lindauer M (1971) Communication among social bees. Harvard University Press, CambridgeCrossRefGoogle Scholar
  38. 68.
    Moravej Z, Akhlaghi A (2013) A novel approach based on cuckoo search for DG allocation in distribution network. Electr Power Energy Syst 44(1):672–679CrossRefGoogle Scholar
  39. 71.
    Nakrani S, Tovey C (2004) On honeybees and dynamic server allocation in Internet hosting centers. Adapt Behav 12(3):223–240CrossRefGoogle Scholar
  40. 79.
    Pavlyukevich I (2007) Lévy flights, non-local search and simulated annealing. J Comput Phys 226(2):1830–1844MathSciNetzbMATHCrossRefGoogle Scholar
  41. 85.
    Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The bees algorithm, Technical Note, Manufacturing Engineering Centre, Cardiff UniversityGoogle Scholar
  42. 87.
    Rashedi E, Nezamabadi-pour H, Sayazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248zbMATHCrossRefGoogle Scholar
  43. 88.
    Reynolds AM, Rhodes CJ (2009) The Lévy flight paradigm: random search patterns and mechanisms. Ecology 90(4):877–887CrossRefGoogle Scholar
  44. 89.
    Rodrigues D, Silva GFA, Papa JP, Marana AN, Yang XS (2016) EEG-based person identification through binary flower pollination algorithm. Expert Syst Appl 62(1):81–90CrossRefGoogle Scholar
  45. 95.
    Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359MathSciNetzbMATHCrossRefGoogle Scholar
  46. 96.
    Struik DJ (1987) A concise history of mathematics, 4th edn. Dover, New YorkzbMATHGoogle Scholar
  47. 103.
    Turing AM (1948) Intelligent machinery. National Physical Laboratory, Technical Report, TeddingtonGoogle Scholar
  48. 106.
    Waser NM (1986) Flower constancy: definition, cause and measurement. Am Nat 127(5):596–603CrossRefGoogle Scholar
  49. 107.
    Wolpert DH, Macready WG (1997) No free lunch theorem for optimization. IEEE Trans Evol Comput 1(1):67–82CrossRefGoogle Scholar
  50. 108.
    Wolpert DH, Macready WG (2005) Coevolutionary free lunches. IEEE Trans Evol Comput 9(6):721–735CrossRefGoogle Scholar
  51. 109.
    Yang XS (2005) Engineering optimization via nature-inspired virtual bee algorithms. In: Artificial intelligence and knowledge engineering application: a bioinspired approach, proceedings of IWINAC, pp 317–323CrossRefGoogle Scholar
  52. 110.
    Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press, BristolGoogle Scholar
  53. 111.
    Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2(2):78–84CrossRefGoogle Scholar
  54. 112.
    Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature-inspired cooperative strategies for optimization (NICSO 2010). Studies in computational intelligence, vol 284. Springer, Berlin, pp 65–74CrossRefGoogle Scholar
  55. 114.
    Yang XS (2011) Metaheuristic optimization. Scholarpedia 6(8):11472CrossRefGoogle Scholar
  56. 115.
    Yang XS (2011) Bat algorithm for multi-objective optimisation. Int J Bio-Inspired Comput 3(5):267–274CrossRefGoogle Scholar
  57. 116.
    Yang XS (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation. Lecture notes in computer science, vol 7445, pp 240–249CrossRefGoogle Scholar
  58. 117.
    Yang XS (2014) Cuckoo search and firefly algorithm: theory and applications. Studies in computational intelligence, vol 516. Springer, HeidelbergGoogle Scholar
  59. 118.
    Yang XS (2014) Nature-inspired optimization algorithms. Elsevier Insight, LondonzbMATHGoogle Scholar
  60. 121.
    Yang XS (2018) Optimization techniques and applications with examples. Wiley, HobokenCrossRefGoogle Scholar
  61. 122.
    Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceedings of world congress on nature & biologically inspired computing (NaBic 2009), Coimbatore, India. IEEE, Piscataway, pp 210–214Google Scholar
  62. 123.
    Yang XS, Deb S (2010) Engineering optimization by cuckoo search. Int J Math Model Num Optim 1(4):330–343zbMATHGoogle Scholar
  63. 124.
    Yang XS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40(6):1616–1624MathSciNetzbMATHCrossRefGoogle Scholar
  64. 125.
    Yang XS, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24(1):169–174CrossRefGoogle Scholar
  65. 127.
    Yang XS, He XS (2013) Bat algorithm: literature review and applications. Int J Bio-Inspired Comput 5(3):141–149CrossRefGoogle Scholar
  66. 128.
    Yang XS, Papa JP (2016) Bio-inspired computation and applications in image processing. Academic Press, LondonCrossRefGoogle Scholar
  67. 131.
    Yang XS, Cui ZH, Xiao RB, Gandom AH, Karamanoglu M (2013) Swarm intelligence and bio-inspired computation: theory and applications. Elsevier, LondonCrossRefGoogle Scholar
  68. 132.
    Yang XS, Karamanoglu M, He XS (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9):1222–1237MathSciNetCrossRefGoogle Scholar
  69. 133.
    Yang XS, Chien SF, Ting TO (2015) Bio-inspired computation in telecommunications. Morgan Kaufmann, WalthamGoogle Scholar
  70. 135.
    Yildiz AR (2013) Cuckoo search algorithm for the selection of optimal machine parameters in milling operations. Int J Adv Manuf Technol 64(1):55–61CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xin-She Yang
    • 1
  • Xing-Shi He
    • 2
  1. 1.School of Science and TechnologyMiddlesex UniversityLondonUK
  2. 2.College of ScienceXi’an Polytechnic UniversityXi’anChina

Personalised recommendations