Advertisement

CyberKnife Robotic Stereotactic Radiosurgery

  • Erqi Pollom
  • Lei Wang
  • Iris C. Gibbs
  • Scott G. SoltysEmail author
Chapter

Abstract

The CyberKnife, developed by John Adler, a neurosurgeon at Stanford, treated its first patient in 1994. This pioneering system was the first dedicated stereotactic radiosurgery device that did not require an invasive stereotactic frame, allowing investigation of stereotactic principles in extracranial sites. The CyberKnife led to early studies of stereotactic radiotherapy for the lung, pancreas, spine, prostate, and other sites in the body. We review the early history of the development of the CyberKnife, describe the components of the system that allow for stereotactic accuracy, highlight how advances in the technology over the years have contributed to clinical outcomes, and look to where the CyberKnife, and the field of radiosurgery, may be headed in the future.

References

  1. 1.
    Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand. 1951;102:316–9.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Adler JR. Accruray, incorporated: a neurosurgical business case study. Clin Neurosurg. 2005;52:87.PubMedGoogle Scholar
  3. 3.
    Adler JR Jr, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL. The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg. 1997;69(1–4 Pt 2):124–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Adler JR Jr, Murphy MJ, Chang SD, Hancock SL. Image-guided robotic radiosurgery. Neurosurgery. 1999;44(6):1299–306; discussion 1306–7PubMedGoogle Scholar
  5. 5.
    Murphy MJ, Cox RS. The accuracy of dose localization for an image-guided frameless radiosurgery system. Med Phys. 1996;23(12):2043–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Murphy MJ. An automatic six-degree-of-freedom image registration algorithm for image-guided frameless stereotaxic radiosurgery. Med Phys. 1997;24(6):857–66.CrossRefPubMedGoogle Scholar
  7. 7.
    Schweikard A, Bodduluri M, Adler JR. Planning for camera-guided robotic radiosurgery. IEEE Trans Rob Autom. 1998;14(6):951–62.CrossRefGoogle Scholar
  8. 8.
    Fu D, Kuduvalli G. A fast, accurate, and automatic 2D-3D image registration for image-guided cranial radiosurgery. Med Phys. 2008;35(5):2180–94.CrossRefPubMedGoogle Scholar
  9. 9.
    Whyte RI, Crownover R, Murphy MJ, Martin DP, Rice TW, DeCamp MM Jr, et al. Stereotactic radiosurgery for lung tumors: preliminary report of a phase I trial. Ann Thorac Surg. 2003;75(4):1097–101.CrossRefPubMedGoogle Scholar
  10. 10.
    Le Q-T, Loo BW, Ho A, Cotrutz C, Koong AC, Wakelee H, et al. Results of a phase I dose-escalation study using single-fraction stereotactic radiotherapy for lung tumors. J Thorac Oncol. 2006;1(8):802–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Davis JN, Medbery C 3rd, Sharma S, Perry D, Pablo J, D’Ambrosio DJ, et al. Stereotactic body radiotherapy for early-stage non-small cell lung cancer: clinical outcomes from a National Patient Registry. J Radiat Oncol. 2015;4(1):55–63.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chung YW, Han DS, Paik CH, Kim JP, Choi JH, Sohn JH, et al. Localized esophageal ulcerations after CyberKnife treatment for metastatic hepatic tumor of colon cancer. Korean J Gastroenterol. 2006;47(6):449–53.PubMedGoogle Scholar
  13. 13.
    Que J, Kuo H-T, Lin L-C, Lin K-L, Lin C-H, Lin Y-W, et al. Clinical outcomes and prognostic factors of cyberknife stereotactic body radiation therapy for unresectable hepatocellular carcinoma. BMC Cancer. 2016;16:451.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Su T-S, Liang P, Lu H-Z, Liang J, Gao Y-C, Zhou Y, et al. Stereotactic body radiation therapy for small primary or recurrent hepatocellular carcinoma in 132 Chinese patients. J Surg Oncol. 2016;113(2):181–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Koong AC, Le QT, Ho A, Fong B, Fisher G, Cho C, et al. Phase I study of stereotactic radiosurgery in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2004;58(4):1017–21.CrossRefPubMedGoogle Scholar
  16. 16.
    Koong AC, Christofferson E, Le QT, Goodman KA, Ho A, Kuo T, et al. Phase II study to assess the efficacy of conventionally fractionated radiotherapy followed by a stereotactic radiosurgery boost in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2005;63(2):320–3.CrossRefPubMedGoogle Scholar
  17. 17.
    Herman JM, Chang DT, Goodman KA, Dholakia AS, Raman SP, Hacker-Prietz A, et al. Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer. 2015;121(7):1128–37.CrossRefPubMedGoogle Scholar
  18. 18.
    King CR, Brooks JD, Gill H, Pawlicki T, Cotrutz C, Presti JC Jr. Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial. Int J Radiat Oncol Biol Phys. 2009;73(4):1043–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Katz AJ, Kang J. Stereotactic body radiotherapy as treatment for organ confined low- and intermediate-risk prostate carcinoma, a 7-year study. Front Oncol. 2014;4:240.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Katz AJ, Kang J. Quality of life and toxicity after SBRT for organ-confined prostate cancer, a 7-year study. Front Oncol. 2014;4:301.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Freeman D, Dickerson G, Perman M. Multi-institutional registry for prostate cancer radiosurgery: a prospective observational clinical trial. Front Oncol. 2014;4:369.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Fuller DB, Naitoh J, Mardirossian G. Virtual HDR CyberKnife SBRT for localized prostatic carcinoma: 5-year disease-free survival and toxicity observations. Front Oncol. 2014;24(4):321.Google Scholar
  23. 23.
    Le Q-T, Tate D, Koong A, Gibbs IC, Chang SD, Adler JR, et al. Improved local control with stereotactic radiosurgical boost in patients with nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2003;56(4):1046–54.CrossRefPubMedGoogle Scholar
  24. 24.
    Heron DE, Ferris RL, Karamouzis M, Andrade RS, Deeb EL, Burton S, et al. Stereotactic body radiotherapy for recurrent squamous cell carcinoma of the head and neck: results of a phase I dose-escalation trial. Int J Radiat Oncol Biol Phys. 2009;75(5):1493–500.CrossRefPubMedGoogle Scholar
  25. 25.
    Lartigau EF, Tresch E, Thariat J, Graff P, Coche-Dequeant B, Benezery K, et al. Multi institutional phase II study of concomitant stereotactic reirradiation and cetuximab for recurrent head and neck cancer. Radiother Oncol. 2013;109(2):281–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Yamazaki H, Ogita M, Kodani N, Nakamura S, Inoue H, Himei K, et al. Frequency, outcome and prognostic factors of carotid blowout syndrome after hypofractionated re-irradiation of head and neck cancer using CyberKnife: a multi-institutional study. Radiother Oncol. 2013;107(3):305–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Antypas C, Pantelis E. Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system. Phys Med Biol. 2008;53(17):4697–718.CrossRefPubMedGoogle Scholar
  28. 28.
    Ryu SI, Chang SD, Kim DH, Murphy MJ, Le QT, Martin DP, et al. Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions. Neurosurgery. 2001;49(4):838–46.PubMedGoogle Scholar
  29. 29.
    Ho AK, Fu D, Cotrutz C, Hancock SL, Chang SD, Gibbs IC, et al. A study of the accuracy of cyberknife spinal radiosurgery using skeletal structure tracking. Neurosurgery. 2007;60(2 Suppl 1):ONS147–56; discussion ONS156.PubMedGoogle Scholar
  30. 30.
    Schweikard A, Shiomi H, Adler J. Respiration tracking in radiosurgery. Med Phys. 2004;31(10):2738–41.CrossRefPubMedGoogle Scholar
  31. 31.
    Pepin EW, Wu H, Zhang Y, Lord B. Correlation and prediction uncertainties in the cyberknife synchrony respiratory tracking system. Med Phys. 2011;38(7):4036–44.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Nioutsikou E, Seppenwoolde Y, Symonds-Tayler JRN, Heijmen B, Evans P, Webb S. Dosimetric investigation of lung tumor motion compensation with a robotic respiratory tracking system: an experimental study. Med Phys. 2008;35(4):1232–40.CrossRefPubMedGoogle Scholar
  33. 33.
    Urschel HC. Robotic radiosurgery. Treating tumors that move with respiration. Springer-Verlag Berlin Heidelberg: Springer Science & Business Media; 2007. 317 p.Google Scholar
  34. 34.
    Fürweger C, Prins P, Coskan H, Heijmen BJM. Characteristics and performance of the first commercial multileaf collimator for a robotic radiosurgery system. Med Phys. 2016;43(5):2063.CrossRefPubMedGoogle Scholar
  35. 35.
    van de Water S, Hoogeman MS, Breedveld S, Nuyttens JJME, Schaart DR, Heijmen BJM. Variable circular collimator in robotic radiosurgery: a time-efficient alternative to a mini-multileaf collimator? Int J Radiat Oncol Biol Phys. 2011;81(3):863–70.CrossRefPubMedGoogle Scholar
  36. 36.
    McGuinness CM, Gottschalk AR, Lessard E, Nakamura JL, Pinnaduwage D, Pouliot J, et al. Investigating the clinical advantages of a robotic linac equipped with a multileaf collimator in the treatment of brain and prostate cancer patients. J Appl Clin Med Phys. 2015;16(5):284–95.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Jin L, Price RA, Wang L, Meyer J, Fan JJ, Ma C, et al. Dosimetric and delivery efficiency investigation for treating hepatic lesions with a MLC-equipped robotic radiosurgery--radiotherapy combined system. Med Phys. 2016;43(2):727–33.CrossRefPubMedGoogle Scholar
  38. 38.
    Kathriarachchi V, Shang C, Evans G, Leventouri T, Kalantzis G. Dosimetric and radiobiological comparison of CyberKnife M6™ InCise multileaf collimator over IRIS™ variable collimator in prostate stereotactic body radiation therapy. J Med Phys. 2016;41(2):135–43.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Nalichowski A, Kaufman I, Gallo J, Bossenberger T, Solberg T, Ramirez E, et al. Single fraction radiosurgery/stereotactic body radiation therapy (SBRT) for spine metastasis: a dosimetric comparison of multiple delivery platforms. J Appl Clin Med Phys. 2017;18(1):164–9.PubMedGoogle Scholar
  40. 40.
    Fürweger C, Drexler C, Muacevic A, Wowra B, de Klerck EC, Hoogeman MS. CyberKnife robotic spinal radiosurgery in prone position: dosimetric advantage due to posterior radiation access? J Appl Clin Med Phys. 2014;15(4):4427.CrossRefPubMedGoogle Scholar
  41. 41.
    Chuang CF, Larson DA, Zytkovicz A, Smith V, Petti PL. Peripheral dose measurement for CyberKnife radiosurgery with upgraded linac shielding. Med Phys. 2008;35(4):1494–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Murphy MJ, Balter J, Balter S, BenComo JA Jr, Das IJ, Jiang SB, et al. The management of imaging dose during image-guided radiotherapy: report of the AAPM Task Group 75. Med Phys. 2007;34(10):4041–63.CrossRefPubMedGoogle Scholar
  43. 43.
    Petti PL, Chuang CF, Smith V, Larson DA. Peripheral doses in CyberKnife radiosurgery. Med Phys. 2006;33(6):1770–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Adler JR Jr, Bower R, Gupta G, Lim M, Efron A, Gibbs IC, et al. Nonisocentric radiosurgical rhizotomy for trigeminal neuralgia. Neurosurgery. 2009;64(2 Suppl):A84–90.CrossRefPubMedGoogle Scholar
  45. 45.
    Stancanello J, Romanelli P, Pantelis E, Sebastiano F, Modugno N. Atlas-based functional radiosurgery: early results. Med Phys. 2009;36(2):457–63.CrossRefPubMedGoogle Scholar
  46. 46.
    Franzini A, Marchetti M, Brait L, Milanesi I, Messina G, Forapani E, et al. Deep brain stimulation and frameless stereotactic radiosurgery in the treatment of bilateral parkinsonian tremor: target selection and case report of two patients. Acta Neurochir. 2011;153(5):1069–75.CrossRefPubMedGoogle Scholar
  47. 47.
    Loo BW Jr, Soltys SG, Wang L, Lo A, Fahimian BP, Iagaru A, et al. Stereotactic ablative radiotherapy for the treatment of refractory cardiac ventricular arrhythmia. Circ Arrhythm Electrophysiol. 2015;8(3):748–50.CrossRefPubMedGoogle Scholar
  48. 48.
    Cuculich PS, Schill MR, Kashani R, Mutic S, Lang A, Cooper D, et al. Noninvasive cardiac radiation for ablation of ventricular tachycardia. N Engl J Med. 2017;377(24):2325–36.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Bhatt N, Long SA, Gardner EA, Tay J, Ladich E, Chamberlain D, et al. Radiosurgical ablation of the renal nerve in a porcine model: a minimally invasive therapeutic approach to treat refractory hypertension. Cureus. 2017;9(2):e1055.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Kondziolka D, Lacomis D, Niranjan A, Mori Y, Maesawa S, Fellows W, et al. Histological effects of trigeminal nerve radiosurgery in a primate model: implications for trigeminal neuralgia radiosurgery. Neurosurgery. 2000;46(4):971–6. discussion 976–7.PubMedGoogle Scholar
  51. 51.
    De Salles AAF, Medin P. Functional spine radiosurgery. Spine Radiosurgery. 2009;1:176.Google Scholar
  52. 52.
    Li G, Patil C, Adler JR, Lad SP, Soltys SG, Gibbs IC, et al. CyberKnife rhizotomy for facetogenic back pain: a pilot study. Neurosurg Focus. 2007;23(6):E2.CrossRefPubMedGoogle Scholar
  53. 53.
    Muacevic A, Nentwich M, Wowra B, Staerk S, Kampik A, Schaller U. Development of a streamlined, non-invasive robotic radiosurgery method for treatment of uveal melanoma. Technol Cancer Res Treat. 2008;7(5):369–74.CrossRefPubMedGoogle Scholar
  54. 54.
    Klingenstein A, Fürweger C, Nentwich MM, Schaller UC, Foerster PI, Wowra B, et al. Quality of life in the follow-up of uveal melanoma patients after CyberKnife treatment. Melanoma Res. 2013;23(6):481–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Zorlu F, Selek U, Kiratli H. Initial results of fractionated CyberKnife radiosurgery for uveal melanoma. J Neuro-Oncol. 2009;94(1):111–7.CrossRefGoogle Scholar
  56. 56.
    Eibl-Lindner K, Fürweger C, Nentwich M, Foerster P, Wowra B, Schaller U, et al. Robotic radiosurgery for the treatment of medium and large uveal melanoma. Melanoma Res. 2016;26(1):51–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Béliveau-Nadeau D, Callejo S, Roberge D. Technique for robotic stereotactic irradiation of choroidal melanoma. Cureus. 2016;8(4):e582.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Klingenstein A, Fürweger C, Mühlhofer AK, Leicht SF, Schaller UC, Muacevic A, et al. Quality of life in the follow-up of uveal melanoma patients after enucleation in comparison to CyberKnife treatment. Graefes Arch Clin Exp Ophthalmol. 2016;254(5):1005–12.CrossRefPubMedGoogle Scholar
  59. 59.
    Staehler M, Fürweger C, Kufeld M, Karl A, Roosen A, Stief C, et al. Cyberknife radiosurgery of a renal pelvis tumor to avoid renal dialysis. Cureus [Internet]. 2010;Cureus 2(11):e17.  https://doi.org/10.7759/cureus.17.CrossRefGoogle Scholar
  60. 60.
    Sun MRM, Brook A, Powell MF, Kaliannan K, Wagner AA, Kaplan ID, et al. Effect of stereotactic body radiotherapy on the growth kinetics and enhancement pattern of primary renal tumors. AJR Am J Roentgenol. 2016;206(3):544–53.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Witjas T, Carron R, Krack P, Eusebio A, Vaugoyeau M, Hariz M, et al. A prospective single-blind study of gamma knife thalamotomy for tremor. Neurology. 2015;85(18):1562–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Kondziolka D, Flickinger JC, Hudak R. Results following gamma knife radiosurgical anterior capsulotomies for obsessive compulsive disorder. Neurosurgery. 2011;68(1):28–32; discussion 23–3CrossRefPubMedGoogle Scholar
  63. 63.
    Borchers DJ, Litchfield CP, Schaal DW, Adler JR. Stereotactic Radiosurgical Neuromodulation for chemical dependency: a theoretical approach to addiction therapy. Cureus. 2009;Cureus 1(12):e6.  https://doi.org/10.7759/cureus.6.CrossRefGoogle Scholar
  64. 64.
    Shah JL, Li G, Shaffer JL, Azoulay MI, Gibbs IC, Nagpal S, et al. Stereotactic radiosurgery and hypofractionated radiotherapy for glioblastoma. Neurosurgery. 2018;82(1):24–34.CrossRefPubMedGoogle Scholar
  65. 65.
    Yamada Y, Laufer I, Cox BW, Lovelock DM, Maki RG, Zatcky JM, et al. Preliminary results of high-dose single-fraction radiotherapy for the management of chordomas of the spine and sacrum. Neurosurgery. 2013;73(4):673–80; discussion 680CrossRefPubMedGoogle Scholar
  66. 66.
    Pollom EL, Fujimoto D, Wynne J, Seiger K, Modlin LA, Jacobs LR, et al. Phase 1/2 trial of 5-fraction stereotactic radiosurgery with 5-mm margins with concurrent and adjuvant Temozolomide in newly diagnosed Supratentorial glioblastoma: health-related quality of life results. Int J Radiat Oncol Biol Phys. 2017;98(1):123–30.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Ney DE, Carlson JA, Damek DM, Gaspar LE, Kavanagh BD, Kleinschmidt-DeMasters BK, et al. Phase II trial of hypofractionated intensity-modulated radiation therapy combined with temozolomide and bevacizumab for patients with newly diagnosed glioblastoma. J Neuro-Oncol. 2015;122(1):135–43.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Erqi Pollom
    • 1
    • 2
  • Lei Wang
    • 1
    • 2
  • Iris C. Gibbs
    • 1
    • 2
  • Scott G. Soltys
    • 1
    • 2
    Email author
  1. 1.Stanford Cancer InstituteStanfordUSA
  2. 2.Stanford University, Department of Radiation OncologyStanfordUSA

Personalised recommendations