Leksell Gamma Knife Radiosurgery

  • Diogo P. Cordeiro
  • David J. SchlesingerEmail author


Lars Leksell’s conception of stereotactic radiosurgery and the invention of the Gamma Knife as a means to realize his idea was the result of his integration of a many parallel developments in neurosurgery and radiology. Throughout its history, Gamma Knife radiosurgery has continued to evolve in order to take advantage of new imaging modalities, improving computer and hardware technology, and advances in our understanding of high-dose radiobiology. This chapter summarizes the technique of Gamma Knife stereotactic radiosurgery (GKSRS) from both a historical and technical point of view and in the process tries to show how integration of new developments promises a prominent role for GKSRS in the future.


  1. 1.
    Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand. 1951;102(4):316–9.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Ganz JC. Chapter 13 – Changing the gamma knife. In: Ganz JC, editor. Progress in Brain Research, vol. 215. Amsterdam: Elsevier; 2014. p. 117–25.Google Scholar
  3. 3.
    Leksell L. Cerebral radiosurgery. I. Gammathalanotomy in two cases of intractable pain. Acta Chir Scand. 1968;134(8):585–95.PubMedGoogle Scholar
  4. 4.
    Leksell L. [Clinical research; a comment]. Svenska lakartidningen. 1954;51(48):3078–83. Klinisk forskning: ett diskussionsinlagg.Google Scholar
  5. 5.
    Leksell L, Larsson B, Andersson B, Rexed B, Sourander P, Mair W. Research on “localized radio-lesions”. VI. Restricted radio-lesions in the depth of the brain produced by a beam of high energy protons. AFOSR TN United States Air Force Off Sci Res. 1960;60–1406:1–13.PubMedGoogle Scholar
  6. 6.
    Larsson B, Liden K, Sarby B. Irradiation of small structures through the intact skull. Acta Radiol Ther Phys Biol. 1974;13(6):512–34.CrossRefGoogle Scholar
  7. 7.
    Sarby B. Cerebral radiation surgery with narrow gamma beams; physical experiments. Acta Radiol Ther Phys Biol. 1974;13(5):425–45.CrossRefGoogle Scholar
  8. 8.
    Leksell L. Stereotactic radiosurgery. J Neurol Neurosurg Psychiatry. 1983;46(9):797–803.CrossRefGoogle Scholar
  9. 9.
    Leksell L. Stereotaxic radiosurgery in trigeminal neuralgia. Acta Chir Scand. 1971;137(4):311–4.PubMedGoogle Scholar
  10. 10.
    Leksell L. A note on the treatment of acoustic tumours. Acta Chir Scand. 1971;137(8):763–5.PubMedGoogle Scholar
  11. 11.
    Steiner L, Leksell L, Greitz T, Forster DM, Backlund EO. Stereotaxic radiosurgery for cerebral arteriovenous malformations. Report of a case. Acta Chir Scand. 1972;138(5):459–64.PubMedGoogle Scholar
  12. 12.
    Goetsch SJ. Gamma Knife. In: Benedict SH, Schlesinger DJ, Goetsch SJ, Kavanagh BD, editors. Stereotactic radiosurgery and stereotactic body radiation therapy. Boca Raton, FL: CRC Press; 2014. p. 39–53.Google Scholar
  13. 13.
    Lunsford LD, Flickinger J, Lindner G, Maitz A. Stereotactic radiosurgery of the brain using the first United States 201 cobalt-60 source gamma knife. Neurosurgery. 1989;24(2):151–9.CrossRefGoogle Scholar
  14. 14.
    Wu A, Lindner G, Maitz A, Kalend A, Lunsford L, Flickinger J, et al. Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 1990;18(4):941–9.CrossRefGoogle Scholar
  15. 15.
    Soanes T, Hampshire A, Vaughan P, Brownett C, Rowe J, Radatz M, et al. The commissioning and quality assurance of the Automatic Positioning System on the Leksell gamma knife. J Neurosurg. 2002;97(5 Suppl):574–8.CrossRefGoogle Scholar
  16. 16.
    Kondziolka D, Maitz AH, Niranjan A, Flickinger JC. An evaluation of the Model C gamma knife with automatic patient positioning. Neurosurgery. 2002;50(2):429–32.PubMedGoogle Scholar
  17. 17.
    Kuo JS, Yu C, Giannotta SL, Petrovich Z, Apuzzo ML. The Leksell gamma knife Model U versus Model C: a quantitative comparison of radiosurgical treatment parameters. Neurosurgery. 2004;55(1):168–73.CrossRefGoogle Scholar
  18. 18.
    Lindquist C, Paddick I. The Leksell Gamma Knife Perfexion and comparisons with its predecessors. Oper Neurosurg. 2007;61(suppl_3):ONS-130–ONS-41.CrossRefGoogle Scholar
  19. 19.
    Novotny J Jr, Bhatnagar JP, Niranjan A, Quader MA, Huq MS, Bednarz G, et al. Dosimetric comparison of the Leksell Gamma Knife perfexion and 4C. J Neurosurg. 2008;109(Suppl):8–14.CrossRefGoogle Scholar
  20. 20.
    Régis J, Tamura M, Guillot C, Yomo S, Muraciolle X, Nagaje M, et al. Radiosurgery with the world’s first fully robotized Leksell Gamma Knife PerfeXion in clinical use: a 200-patient prospective, randomized, controlled comparison with the Gamma Knife 4C. Neurosurgery. 2009;64(2):346–56.CrossRefGoogle Scholar
  21. 21.
    Elekta Instrument A. Leksell Gamma Knife® Perfexion™ installation manual. Stockholm: Elekta Instrument, AB; 2013. Contract No: 1022537 Rev. 02.Google Scholar
  22. 22.
    Campbell E, Walter E. Dandy-surgeon, 1886-1946. J Neurosurg. 1951;8(3):249–62.CrossRefGoogle Scholar
  23. 23.
    Kilgore EJ, Elster AD. Walter Dandy and the history of ventriculography. Radiology. 1995;194(3):657–60.CrossRefGoogle Scholar
  24. 24.
    Arndt J. Early Gamma Knife Development: A Physicist’s personal memories.
  25. 25.
    Lewander R, Bergström M, Boethius J, Collins V, Edner G, Greitz T, et al. Stereotactic computer tomography for biopsy of gliomas. Acta Radiol Diagn. 1978;19(6):867–88.CrossRefGoogle Scholar
  26. 26.
    Larner JM, Berk HW, Agarwal SK, Steiner L. The dosimetric consequences of weighted fields using the same isocenter in radiosurgery. Stereotact Funct Neurosurg. 1993;61(Suppl. 1):142–50.CrossRefGoogle Scholar
  27. 27.
    Leksell L, Leksell D, Schwebel J. Stereotaxis and nuclear magnetic resonance. J Neurol Neurosurg Psychiatry. 1985;48(1):14–8.CrossRefGoogle Scholar
  28. 28.
    Sampath S. The history of MRI. IEEE Eng Med Biol Mag. 2000;19(1):26. PubMedPubMedGoogle Scholar
  29. 29.
    Stuckey SL, Harris AJ, Mannolini SM. Detection of acoustic schwannoma: use of constructive interference in the steady state three-dimensional MR. AJNR Am J Neuroradiol. 1996;17(7):1219–25.PubMedGoogle Scholar
  30. 30.
    Wetzel SG, Johnson G, Tan AG, Cha S, Knopp EA, Lee VS, et al. Three-dimensional, T1-weighted gradient-echo imaging of the brain with a volumetric interpolated examination. AJNR Am J Neuroradiol. 2002;23(6):995–1002.PubMedGoogle Scholar
  31. 31.
    Sudhyadhom A, Haq IU, Foote KD, Okun MS, Bova FJ. A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). NeuroImage. 2009;47(Suppl 2):T44–52.CrossRefGoogle Scholar
  32. 32.
    Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol. 2009;30(2):367–72.CrossRefGoogle Scholar
  33. 33.
    Chang Z, Kirkpatrick JP, Wang Z, Cai J, Adamson J, Yin FF. Evaluating radiation-induced white matter changes in patients treated with stereotactic radiosurgery using diffusion tensor imaging: a pilot study. Technol Cancer Res Treat. 2014;13(1):21–8.CrossRefGoogle Scholar
  34. 34.
    Lee CC, Wintermark M, Xu Z, Yen CP, Schlesinger D, Sheehan JP. Application of diffusion-weighted magnetic resonance imaging to predict the intracranial metastatic tumor response to gamma knife radiosurgery. J Neuro-Oncol. 2014;118(2):351–61.CrossRefGoogle Scholar
  35. 35.
    Kirkpatrick JP, Soltys SG, Lo SS, Beal K, Shrieve DC, Brown PD. The radiosurgery fractionation quandary: single fraction or hypofractionation? Neuro Oncol. 2017;19(suppl_2):ii38–49.CrossRefGoogle Scholar
  36. 36.
    Rosenthal DI, Glatstein E. We’ve got a treatment, but what’s the disease? Or a brief history of hypofractionation and its relationship to stereotactic radiosurgery. Oncologist. 1996;1(1 & 2):1–7.PubMedGoogle Scholar
  37. 37.
    Sayer FT, Sherman JH, Yen CP, Schlesinger DJ, Kersh R, Sheehan JP. Initial experience with the eXtend System: a relocatable frame system for multiple-session gamma knife radiosurgery. World Neurosurg. 2011;75(5–6):665–72.CrossRefGoogle Scholar
  38. 38.
    Reiner B, Bownes P, Buckley DL, Thwaites DI. Quantifying the trigger level of the vacuum surveillance system of the Gamma-Knife eXtend™ positioning system and evaluating the potential impact on dose delivery. J Radiosurg SBRT. 2016;4(1):31.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Schlesinger D, Xu Z, Taylor F, Yen CP, Sheehan J. Interfraction and intrafraction performance of the Gamma Knife Extend system for patient positioning and immobilization. J Neurosurg. 2012;117(Suppl):217–24.CrossRefGoogle Scholar
  40. 40.
    Zeverino M, Jaccard M, Patin D, Ryckx N, Marguet M, Tuleasca C, et al. Commissioning of the Leksell Gamma Knife® Icon™. Med Phys. 2017;44(2):355–63.CrossRefGoogle Scholar
  41. 41.
    AlDahlawi I, Prasad D, Podgorsak MB. Evaluation of stability of stereotactic space defined by cone-beam CT for the Leksell Gamma Knife Icon. J Appl Clin Med Phys. 2017;18(3):67–72.CrossRefGoogle Scholar
  42. 42.
    Elekta Instrument A. Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife® Icon™. Stockholm: Elekta Instrument, AB; 2015. Contract No: 1509394.Google Scholar
  43. 43.
    Elekta Instrument A. Geometric quality assurance for Leksell Gamma Knife® Icon™. Stockholm: Elekta Instrument, AB; 2015. Contract No: 1518146.Google Scholar
  44. 44.
    Wright G, Harrold N, Hatfield P, Bownes P. Validity of the use of nose tip motion as a surrogate for intracranial motion in mask-fixated frameless Gamma Knife® Icon™ therapy. J Radiosurg SBRT. 2017;4(4):289.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Elekta Instrument A. Leksell Gamma Knife Icon instructions for use. Stockholm: Elekta Instrument, AB; 2015. Contract No: 1505194.Google Scholar
  46. 46.
    Tonetti D, Bhatnagar J, Lunsford LD. Quantitative analysis of movement of a cervical target during stereotactic radiosurgery using the Leksell Gamma Knife Perfexion. J Neurosurg. 2012;117(Suppl):211–6.CrossRefGoogle Scholar
  47. 47.
    Ma L, Nichol A, Hossain S, Wang B, Petti P, Vellani R, et al. Variable dose interplay effects across radiosurgical apparatus in treating multiple brain metastases. Int J Comput Assist Radiol Surg. 2014;9(6):1079–86.CrossRefGoogle Scholar
  48. 48.
    Thomas EM, Popple RA, Wu X, Clark GM, Markert JM, Guthrie BL, et al. Comparison of plan quality and delivery time between volumetric arc therapy (RapidArc) and Gamma Knife radiosurgery for multiple cranial metastases. Neurosurgery. 2014;75(4):409–17. discussion 17-8CrossRefGoogle Scholar
  49. 49.
    Klein EE, Hanley J, Bayouth J, Yin FF, Simon W, Dresser S, et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009;36(9):4197–212.CrossRefGoogle Scholar
  50. 50.
    Liu H, Andrews DW, Evans JJ, Werner-Wasik M, Yu Y, Dicker AP, et al. Plan quality and treatment efficiency for radiosurgery to multiple brain metastases: non-coplanar RapidArc vs. Gamma Knife. Front Oncol. 2016;6:26.PubMedPubMedCentralGoogle Scholar
  51. 51.
    McDonald D, Schuler J, Takacs I, Peng J, Jenrette J, Vanek K. Comparison of radiation dose spillage from the Gamma Knife Perfexion with that from volumetric modulated arc radiosurgery during treatment of multiple brain metastases in a single fraction. J Neurosurg. 2014;121(Suppl):51–9.CrossRefGoogle Scholar
  52. 52.
    Roper J, Chanyavanich V, Betzel G, Switchenko J, Dhabaan A. Single-Isocenter multiple-target stereotactic radiosurgery: risk of compromised coverage. Int J Radiat Oncol Biol Phys. 2015;93(3):540–6.CrossRefGoogle Scholar
  53. 53.
    Fiorentino A, Levra N, Mazzola R, Fersino S, Ricchetti F, Alongi F. Correspondence: Volumetric Arc Therapy (RapidArc) vs Gamma Knife Radiosurgery for Multiple Brain Metastases: Not Only a Dosimetric Issue. Neurosurgery. 2015;77(2):310.CrossRefGoogle Scholar
  54. 54.
    Niranjan A, Gobbel G, Novotny J Jr, Bhatnagar J, Fellows W, Lunsford LD. Impact of decaying dose rate in gamma knife radiosurgery: in vitro study on 9L rat gliosarcoma cells. J Radiosurg SBRT. 2012;1(4):257–64.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Balamucki CJ, Stieber VW, Ellis TL, Tatter SB, Deguzman AF, McMullen KP, et al. Does dose rate affect efficacy? The outcomes of 256 gamma knife surgery procedures for trigeminal neuralgia and other types of facial pain as they relate to the half-life of cobalt. J Neurosurg. 2006;105(5):730–5.CrossRefGoogle Scholar
  56. 56.
    Lee JY, Sandhu S, Miller D, Solberg T, Dorsey JF, Alonso-Basanta M. Higher dose rate Gamma Knife radiosurgery may provide earlier and longer-lasting pain relief for patients with trigeminal neuralgia. J Neurosurg. 2015;123(4):961–8.CrossRefGoogle Scholar
  57. 57.
    Stieber VW, Bourland JD, Tome WA, Mehta MP. Gentlemen (and ladies), choose your weapons: Gamma knife vs. linear accelerator radiosurgery. Technol Cancer Res Treat. 2003;2(2):79–86.CrossRefGoogle Scholar
  58. 58.
    Ishiyama H, Teh BS, Ren H, Chiang S, Tann A, Blanco AI, et al. Spontaneous regression of thoracic metastases while progression of brain metastases after stereotactic radiosurgery and stereotactic body radiotherapy for metastatic renal cell carcinoma: abscopal effect prevented by the blood-brain barrier? Clin Genitourin Cancer. 2012;10(3):196–8.CrossRefGoogle Scholar
  59. 59.
    Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol. 2004;14(3):198–206.CrossRefGoogle Scholar
  60. 60.
    Szeifert GT, Salmon I, Rorive S, Massager N, Devriendt D, Simon S, et al. Does gamma knife surgery stimulate cellular immune response to metastatic brain tumors? A histopathological and immunohistochemical study. Journal of neurosurgery. 2005;102(s_supplement):180–4.CrossRefGoogle Scholar
  61. 61.
    Hynynen K, Clement G. Clinical applications of focused ultrasound-the brain. Int J Hypertens. 2007;23(2):193–202.Google Scholar
  62. 62.
    Schlesinger D, Benedict S, Diederich C, Gedroyc W, Klibanov A, Larner J. MR-guided focused ultrasound surgery, present and future. Med Phys. 2013;40(8):080901.CrossRefGoogle Scholar
  63. 63.
    Rahmathulla G, Recinos PF, Kamian K, Mohammadi AM, Ahluwalia MS, Barnett GH. MRI-guided laser interstitial thermal therapy in neuro-oncology: a review of its current clinical applications. Oncology. 2014;87(2):67–82.CrossRefGoogle Scholar
  64. 64.
    Rieke V, Butts PK. MR thermometry. J Magn Reson Imaging. 2008;27(2):376–90.CrossRefGoogle Scholar
  65. 65.
    Burke CW, Klibanov AL, Sheehan JP, Price RJ. Inhibition of glioma growth by microbubble activation in a subcutaneous model using low duty cycle ultrasound without significant heating. J Neurosurg. 2011;114(6):1654–61.CrossRefGoogle Scholar
  66. 66.
    Timbie KF, Mead BP, Price RJ. Drug and gene delivery across the blood-brain barrier with focused ultrasound. J Control Release. 2015;219:61–75.CrossRefGoogle Scholar
  67. 67.
    de Greef M, Crezee J, van Eijk JC, Pool R, Bel A. Accelerated ray tracing for radiotherapy dose calculations on a GPU. Med Phys. 2009;36(9):4095–102.CrossRefGoogle Scholar
  68. 68.
    Poole CM, Cornelius I, Trapp JV, Langton CM. Radiotherapy Monte Carlo simulation using cloud computing technology. Australas Phys Eng Sci Med. 2012;35(4):497–502.CrossRefGoogle Scholar
  69. 69.
    Kotrotsou A, Zinn PO, Colen RR. Radiomics in brain tumors: an emerging technique for characterization of tumor environment. Magn Reson Imaging Clin N Am. 2016;24(4):719–29.CrossRefGoogle Scholar
  70. 70.
    Ortiz-Ramon R, Larroza A, Arana E, Moratal D. A radiomics evaluation of 2D and 3D MRI texture features to classify brain metastases from lung cancer and melanoma. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:493–6.PubMedGoogle Scholar
  71. 71.
    Zhou M, Scott J, Chaudhury B, Hall L, Goldgof D, Yeom KW, et al. Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. AJNR Am J Neuroradiol. 2018;39(2):208–16.CrossRefGoogle Scholar
  72. 72.
    Ng TS, Bading JR, Park R, Sohi H, Procissi D, Colcher D, et al. Quantitative, simultaneous PET/MRI for intratumoral imaging with an MRI-compatible PET scanner. J Nucl Med. 2012;53(7):1102–9.CrossRefGoogle Scholar
  73. 73.
    Wang LV, Yao J. A practical guide to photoacoustic tomography in the life sciences. Nat Methods. 2016;13(8):627–38.CrossRefGoogle Scholar
  74. 74.
    Zhang P, Li L, Lin L, Hu P, Shi J, He Y, et al. High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo. J Biophotonics. 2018;11(1):e201700024.CrossRefGoogle Scholar
  75. 75.
    Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90.CrossRefGoogle Scholar
  76. 76.
    Oermann EK, Rubinsteyn A, Ding D, Mascitelli J, Starke RM, Bederson JB, et al. Using a machine learning approach to predict outcomes after radiosurgery for cerebral arteriovenous malformations. Sci Rep. 2016;6:21161.CrossRefGoogle Scholar
  77. 77.
    Solberg TD, Balter JM, Benedict SH, Fraass BA, Kavanagh B, Miyamoto C, et al. Quality and safety considerations in stereotactic radiosurgery and stereotactic body radiation therapy: executive summary. Practical radiation oncology. 2012;2(1):2–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Virginia, Departments of Neurological SurgeryCharlottesvilleUSA
  2. 2.University of Virginia, Departments of Radiation Oncology and Neurological SurgeryCharlottesvilleUSA

Personalised recommendations