Advertisement

MoS2-Reduced Graphene Oxide Electrodes for Electrochemical Supercapacitor

  • K. M. Sarode
  • S. G. Bachhav
  • U. D. Patil
  • D. R. Patil
Conference paper

Abstract

In the present study, molybdenum disulfide-reduced graphene oxide (MoS2-RGO) composite was synthesized via a hydrolysis of lithiated MoS2 (LiMoS2) and the electrochemical performance of the nano sheets was evaluated for super capacitor applications. The MoS2-RGO composite electrode exhibited high specific capacitance (203 F g−1) with excellent cycling stability, compared with MoS2. The high electrochemical performance of the MoS2-RGO composite electrode is mainly attributed to the improved electron and ion transfer mechanism involving synergistic effects of MoS2 and RGO.

Keywords

Graphene oxide Hydrolysis Nano sheets Specific capacitance Cycling stability 

References

  1. 1.
    Wang R, Liu P, Lang J, Zhang L, Yan X (2017) Coupling effect between ultra-small Mn3O4 nanoparticles and porous carbon microrods for hybrid supercapacitors. Energy Storage Mater 6:53–60CrossRefGoogle Scholar
  2. 2.
    Lang J, Zhang X, Liu B, Wang R, Chen J, Yan X (2018) The roles of graphene in advanced Li-ion hybrid supercapacitors. J Energy Chem 27:43–56CrossRefGoogle Scholar
  3. 3.
    Sun J, Wu C, Sun X, Hu H, Zhi C, Hou L, Yuan C (2017) Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. J Mater Chem A 5:9443–9464CrossRefGoogle Scholar
  4. 4.
    Qu C, Zhao B, Jiao Y, Chen D, Dai S, Deglee BM, Chen Y, Walton KS, Zou R, Liu M (2017) Functionalized bimetallic hydroxides derived from metal−organic frameworks for high-performance hybrid super capacitor with exceptional cycling stability. ACS Energy Lett 2:1263–1269CrossRefGoogle Scholar
  5. 5.
    Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as super capacitor electrode materials. Nat Nanotechnol 10:313–318CrossRefGoogle Scholar
  6. 6.
    Kaneti YV, Tang J, Salunkhe RR, Jiang X, Yu A, Wu KC-W, Yamauchi Y (2017) Nanoarchitectured design of porous materials and nan composites from metal-organic frameworks. Adv Mater 29:1604898CrossRefGoogle Scholar
  7. 7.
    Chen Y, Ma J, Li Q, Wang T (2013) Gram-scale synthesis of ultra small SnO2 nanocrystals with an excellent electrochemical performance. Nanoscale 5:3262–3265CrossRefGoogle Scholar
  8. 8.
    Peng Y-Y, Akuzum B, Kurra N, Zhao M-Q, Alhabeb M, Anasori B, Kumbur EC, Alshareef HN, Ger M-D, Gogotsi Y (2016) All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ Sci 9:2847–2854CrossRefGoogle Scholar
  9. 9.
    Cao X, Shi Y, Shi W, Rui X, Yan Q, Kong J, Zhang H (2013) Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in Lithium-ion batteries. Small 9:3433–3438CrossRefGoogle Scholar
  10. 10.
    Saraf M, Natarajan K, Mobin SM (2017) Multifunctional porous NiCo2O4 nanorods: sensitive enzymeless glucose detection and super capacitor properties with impedance spectroscopic investigations. New J Chem 41:9299–9313CrossRefGoogle Scholar
  11. 11.
    Du J, Zhou G, Zhang H, Cheng C, Ma J, Wei W, Chen L, Wang T (2013) Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance super capacitors. ACS Appl Mater Interfaces 5:7405–7409CrossRefGoogle Scholar
  12. 12.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  13. 13.
    Saraf M, Rajak R, Mobin SM (2016) A fascinating multitasking cu- MOF/rGO hybrid for high performance super capacitors and highly sensitive and selective electrochemical nitrite sensors. J Mater Chem A 4:16432–16445CrossRefGoogle Scholar
  14. 14.
    Saraf M, Dar RA, Natarajan K, Srivastava AK, Mobin SM (2016) A binder-free hybrid of CuO-microspheres and rGO Nanosheets as an alternative material for next generation energy storage application. Chem Select 1:2826–2833Google Scholar
  15. 15.
    Hwang H, Kim H, Cho J (2011) MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett 11:4826–4830CrossRefGoogle Scholar
  16. 16.
    Liang Y, Feng R, Yang S, Ma H, Liang J, Chen J (2011) Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv Mater 23:640–643CrossRefGoogle Scholar
  17. 17.
    Jacopo B, Duncan TLA, Andras K (2011) Ripples and layers in ultrathin MoS2 membranes. Nano Lett 11:5148CrossRefGoogle Scholar
  18. 18.
    Saraf M, Natarajan K, Saini AK, Mobin SM (2017) Small biomolecule sensors based on an innovative MoS2−rGO heterostructure modified electrode platform: a binder-free approach. Dalton Trans 46:15848–15858CrossRefGoogle Scholar
  19. 19.
    Zhang LL, Zhou R, Zhao X (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20:5983–5992CrossRefGoogle Scholar
  20. 20.
    Chang H, Wu H (2013) Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ Sci 6:3483–3507CrossRefGoogle Scholar
  21. 21.
    Sarode KM, Bachhav SG, Patil UD, Patil DR (2018) Synthesis and characterization of MoS2-graphene nanocomposite. In: Pawar P, Ronge B, Balasubramaniam R, Seshabhattar S (eds) Techno-Societal 2016. ICATSA 2016. Springer, ChamGoogle Scholar
  22. 22.
    Sarode KM, Patil UD, Patil DR (2018) 3D MoS2-graphene composite as catalyst for enhanced efficient hydrogen evolution. Int J Chem Phys Sci 7(2):81–91Google Scholar
  23. 23.
    Sarode KM, UDPatil DRP (2018) Preparation of MoS2–graphene composites with excellent photocatalytic activity under visible light. Int J Curr Adv Res 7Google Scholar
  24. 24.
    Ramadoss A, Kim SJ (2013) Improved activity of a graphene–TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon 63:434–445CrossRefGoogle Scholar
  25. 25.
    Zhou R, Han C-j, Wang X-m (2017) Hierarchical MoS2-coated three-dimensional graphene network for enhanced supercapacitor performances. J Power Sources 352:99–110CrossRefGoogle Scholar
  26. 26.
    Saraf M, Dar RA, Natarajan K, Srivastava AK, Mobin SM (2016) A binder-free hybrid of CuO-microspheres and rGO nanosheets as an alternative material for next generation energy storage application. Chem Select 1:2826–2833Google Scholar
  27. 27.
    Saraf M, Natarajan K, Mobin SM (2018) Emerging robust heterostructure of MoS2-RGO for high-performance supercapacitors. ACS Appl Mater Interfaces 10:16588–16595CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • K. M. Sarode
    • 1
  • S. G. Bachhav
    • 1
  • U. D. Patil
    • 1
  • D. R. Patil
    • 1
  1. 1.Nanomaterial Research LaboratoryR. C. Patel Arts, Commerce & Science CollegeShirpurIndia

Personalised recommendations