Exercise Testing in the Management of Arrhythmias

  • Audrey Dionne
  • Edward T. O’Leary
  • Shankar Baskar
  • Vassilios J. Bezzerides
  • Mark E. AlexanderEmail author


Atrial and ventricular arrhythmias are commonly seen with exercise stress testing (EST); these are almost always nonsustained, and the significance of those findings is, at best, modest. For patients with structurally normal hearts and combinations of isolated and repetitive ventricular ectopy, EST offers some mechanistic data and some marginal long-term prognostic data. Patients with increased ectopy during exercise or immediately post exercise deserve enhanced follow-up.

In patients with congenital heart disease, EST data, in conjunction with data regarding an individual’s hemodynamic and disease-specific risks, is sometimes helpful in assessing the patient’s overall risk profile. Comprehensive assessment of patients with atrioventricular block (AVB) and pacemakers using EST, including expired gas analysis when feasible, can help define their functional capacity and inform decision-making about programming, lead revisions, or deferring therapy. Exercise testing can also help refine both implantable cardiac defibrillator (ICD) programming and medical therapy to limit inappropriate and appropriate therapies.

Catecholaminergic polymorphic ventricular tachycardia is a specific genetic and clinical disorder that is defined by the exercise arrhythmia response. Repeated EST is one part of sequential assessment of therapy.

For arrhythmogenic cardiomyopathies, while exercise testing is part of their overall clinical and phenotypic characterization, the response to EST will generally be only part of the overall decision-making.


Exercise stress testing Arrhythmias Catecholaminergic polymorphic ventricular tachycardia Arrhythmogenic cardiomyopathies Bradycardia Sinus node dysfunction Atrioventricular block Implantable cardiac defibrillator Tachycardia Supraventricular tachycardia Ventricular arrhythmias Arrhythmogenic cardiomyopathy T-wave alternans 


  1. 1.
    Flinn CJ, Wolff GS, Dick M, Campbell RM, Borkat G, Casta A, et al. Cardiac rhythm after the Mustard operation for complete transposition of the great arteries. N Engl J Med. 1984;310(25):1635–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Dos L, Teruel L, Ferreira IJ, Rodriguez-Larrea J, Miro L, Girona J, et al. Late outcome of Senning and Mustard procedures for correction of transposition of the great arteries. Heart. 2005;91(5):652–6.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Douard H, Labbé L, Barat JL, Broustet JP, Baudet E, Choussat A. Cardiorespiratory response to exercise after venous switch operation for transposition of the great arteries. Chest. 1997;111(1):23–9.CrossRefGoogle Scholar
  4. 4.
    Fredriksen PM, Pettersen E, Thaulow E. Declining aerobic capacity of patients with arterial and atrial switch procedures. Pediatr Cardiol. 2009;30(2):166–71.PubMedCrossRefGoogle Scholar
  5. 5.
    Petko M, Myung RJ, Wernovsky G, Cohen MI, Rychik J, Nicolson SC, et al. Surgical reinterventions following the Fontan procedure. Eur J Cardiothorac Surg. 2003;24(2):255–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Fishberger SB, Wernovsky G, Gentles TL, Gamble WJ, Gauvreau K, Burnett J, et al. Long-term outcome in patients with pacemakers following the Fontan operation. Am J Cardiol. 1996;77(10):887–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Attenhofer Jost CH, Connolly HM, Danielson GK, Bailey KR, Schaff HV, Shen WK, et al. Sinus venosus atrial septal defect: long-term postoperative outcome for 115 patients. Circulation. 2005;112(13):1953–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Epstein AE, DiMarco JP, Ellenbogen KA, Estes NA, Freedman RA, Gettes LS, et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2013;61(3):e6–75.PubMedCrossRefGoogle Scholar
  9. 9.
    den Dulk K, Lindemans FW, Brugada P, Smeets JL, Wellens HJ. Pacemaker syndrome with AAI rate variable pacing: importance of atrioventricular conduction properties, medication, and pacemaker programmability. Pacing Clin Electrophysiol. 1988;11(8):1226–33.CrossRefGoogle Scholar
  10. 10.
    Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR, Goldschlager NF, Hamilton RM, Joglar JA, Kim RJ, Lee R, Marine JE, McLeod CJ, Oken KR, Patton KK, Pellegrini CN, Selzman KA, Thompson A, Varosy PD. 2018. ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay. Heart Rhythm. 2018. pii: S1547-5271(18)31127-5.
  11. 11.
    Schüller H, Brandt J. The pacemaker syndrome: old and new causes. Clin Cardiol. 1991;14(4):336–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Alpert MA, Curtis JJ, Sanfelippo JF, Flaker GC, Walls JT, Mukerji V, et al. Comparative survival after permanent ventricular and dual chamber pacing for patients with chronic high degree atrioventricular block with and without preexistent congestive heart failure. J Am Coll Cardiol. 1986;7(4):925–32.PubMedCrossRefGoogle Scholar
  13. 13.
    Menozzi C, Brignole M, Moracchini PV, Lolli G, Bacchi M, Tesorieri MC, et al. Intrapatient comparison between chronic VVIR and DDD pacing in patients affected by high degree AV block without heart failure. Pacing Clin Electrophysiol. 1990;13(12 Pt 2):1816–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Hargreaves MR, Channon KM, Cripps TR, Gardner M, Ormerod OJ. Comparison of dual chamber and ventricular rate responsive pacing in patients over 75 with complete heart block. Br Heart J. 1995;74(4):397–402.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Oldroyd KG, Rae AP, Carter R, Wingate C, Cobbe SM. Double blind crossover comparison of the effects of dual chamber pacing (DDD) and ventricular rate adaptive (VVIR) pacing on neuroendocrine variables, exercise performance, and symptoms in complete heart block. Br Heart J. 1991;65(4):188–93.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Michaëlsson M, Engle MA. Congenital complete heart block: an international study of the natural history. Cardiovasc Clin. 1972;4(3):85–101.PubMedGoogle Scholar
  17. 17.
    Reybrouck T, Vanden Eynde B, Dumoulin M, Van der Hauwaert LG. Cardiorespiratory response to exercise in congenital complete atrioventricular block. Am J Cardiol. 1989;64(14):896–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Motonaga KS, Punn R, Axelrod DM, Ceresnak SR, Hanisch D, Kazmucha JA, et al. Diminished exercise capacity and chronotropic incompetence in pediatric patients with congenital complete heart block and chronic right ventricular pacing. Heart Rhythm. 2015;12(3):560–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Thambo JB, Bordachar P, Garrigue S, Lafitte S, Sanders P, Reuter S, et al. Detrimental ventricular remodeling in patients with congenital complete heart block and chronic right ventricular apical pacing. Circulation. 2004;110(25):3766–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Karpawich PP, Rabah R, Haas JE. Altered cardiac histology following apical right ventricular pacing in patients with congenital atrioventricular block. Pacing Clin Electrophysiol. 1999;22(9):1372–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Koneru JN, Swerdlow CD, Wood MA, Ellenbogen KA. Minimizing inappropriate or “unnecessary” implantable cardioverter-defibrillator shocks: appropriate programming. Circ Arrhythm Electrophysiol. 2011;4(5):778–90.PubMedCrossRefGoogle Scholar
  22. 22.
    Stephenson EA, Batra AS, Knilans TK, Gow RM, Gradaus R, Balaji S, et al. A multicenter experience with novel implantable cardioverter defibrillator configurations in the pediatric and congenital heart disease population. J Cardiovasc Electrophysiol. 2006;17(1):41–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Moss AJ, Schuger C, Beck CA, Brown MW, Cannom DS, Daubert JP, et al. Reduction in inappropriate therapy and mortality through ICD programming. N Engl J Med. 2012;367(24):2275–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Draper DE, Giddins NG, McCort J, Gross GJ. Diagnostic usefulness of graded exercise testing in pediatric supraventricular tachycardia. Can J Cardiol. 2009;25(7):407–10.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Maurer MS, Shefrin EA, Fleg JL. Prevalence and prognostic significance of exercise-induced supraventricular tachycardia in apparently healthy volunteers. Am J Cardiol. 1995;75(12):788–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Bhat DP, Du W, Karpawich PP. Testing efficacy in determination of recurrent supraventricular tachycardia among subjectively symptomatic children following “successful” ablation. Pacing Clin Electrophysiol. 2014;37(8):1009–16.PubMedCrossRefGoogle Scholar
  27. 27.
    Bunch TJ, Chandrasekaran K, Gersh BJ, Hammill SC, Hodge DO, Khan AH, et al. The prognostic significance of exercise-induced atrial arrhythmias. J Am Coll Cardiol. 2004;43(7):1236–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer M, et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association task force and the European Society of Cardiology Committee for practice guidelines (writing committee to develop guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation. 2006;114(10):e385–484.CrossRefGoogle Scholar
  29. 29.
    Crosson JE, Callans DJ, Bradley DJ, Dubin A, Epstein M, Etheridge S, et al. PACES/HRS expert consensus statement on the evaluation and management of ventricular arrhythmias in the child with a structurally normal heart. Heart Rhythm. 2014;11(9):e55–78.PubMedCrossRefGoogle Scholar
  30. 30.
    Pedersen CT, Kay GN, Kalman J, Borggrefe M, Della-Bella P, Dickfeld T, et al. EHRA/HRS/APHRS expert consensus on ventricular arrhythmias. Heart Rhythm. 2014;11(10):e166–96.PubMedCrossRefGoogle Scholar
  31. 31.
    Cohen MI. Frequent premature ventricular beats in healthy children: when to ignore and when to treat? Curr Opin Cardiol. 2019;34(1):65–72. Scholar
  32. 32.
    Ghosh RM, Gates GJ, Walsh CA, Schiller MS, Pass RH, Ceresnak SR. The prevalence of arrhythmias, predictors for arrhythmias, and safety of exercise stress testing in children. Pediatr Cardiol. 2015;36(3):584–90.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kim J, Kwon M, Chang J, Harris D, Gerson MC, Hwang SS, et al. Meta-analysis of prognostic implications of exercise-induced ventricular premature complexes in the general population. Am J Cardiol. 2016;118(5):725–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Verdile L, Maron BJ, Pelliccia A, Spataro A, Santini M, Biffi A. Clinical significance of exercise-induced ventricular tachyarrhythmias in trained athletes without cardiovascular abnormalities. Heart Rhythm. 2015;12(1):78–85.PubMedCrossRefGoogle Scholar
  35. 35.
    Beaufort-Krol GC, Dijkstra SS, Bink-Boelkens MT. Natural history of ventricular premature contractions in children with a structurally normal heart: does origin matter? Europace. 2008;10(8):998–1003.PubMedCrossRefGoogle Scholar
  36. 36.
    Bertels RA, Harteveld LM, Filippini LH, Clur SA, Blom NA. Left ventricular dysfunction is associated with frequent premature ventricular complexes and asymptomatic ventricular tachycardia in children. Europace. 2017;19(4):617–21.PubMedGoogle Scholar
  37. 37.
    Guerrier K, Anderson JB, Czosek RJ, Mays WA, Statile C, Knilans TK, et al. Usefulness of ventricular premature complexes in asymptomatic patients ≤21 years as predictors of poor left ventricular function. Am J Cardiol. 2015;115(5):652–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Roggen A, Pavlovic M, Pfammatter JP. Frequency of spontaneous ventricular tachycardia in a pediatric population. Am J Cardiol. 2008;101(6):852–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Harris KC, Potts JE, Fournier A, Gross GJ, Kantoch MJ, Cote JM, et al. Right ventricular outflow tract tachycardia in children. J Pediatr. 2006;149(6):822–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Pfammatter JP, Paul T. Idiopathic ventricular tachycardia in infancy and childhood: a multicenter study on clinical profile and outcome. Working Group on Dysrhythmias and Electrophysiology of the Association for European Pediatric Cardiology. J Am Coll Cardiol. 1999;33(7):2067–72.PubMedCrossRefGoogle Scholar
  41. 41.
    Barry OM, Gauvreau K, Rhodes J, Reichman JR, Bourette L, Curran T, et al. Incidence and predictors of clinically important and dangerous arrhythmias during exercise tests in pediatric and congenital heart disease patients. JACC Clin Electrophysiol. 2018;4(10):1319–27.CrossRefGoogle Scholar
  42. 42.
    Bricker JT, Traweek MS, Smith RT, Moak JP, Vargo TA, Garson A Jr. Exercise-related ventricular tachycardia in children. Am Heart J. 1986;112(1):186–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Song MK, Baek JS, Kwon BS, Kim GB, Bae EJ, Noh CI, et al. Clinical spectrum and prognostic factors of pediatric ventricular tachycardia. Circ J. 2010;74(9):1951–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Morwood JG, Triedman JK, Berul CI, Khairy P, Alexander ME, Cecchin F, et al. Radiofrequency catheter ablation of ventricular tachycardia in children and young adults with congenital heart disease. Heart Rhythm. 2004;1(3):301–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Khairy P, Van Hare GF, Balaji S, Berul CI, Cecchin F, Cohen MI, et al. PACES/HRS expert consensus statement on the recognition and management of arrhythmias in adult congenital heart disease: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology (ACC), the American Heart Association (AHA), the European Heart Rhythm Association (EHRA), the Canadian Heart Rhythm Society (CHRS), and the International Society for Adult Congenital Heart Disease (ISACHD). Can J Cardiol. 2014;30(10):e1–e63.PubMedCrossRefGoogle Scholar
  46. 46.
    Napolitano C, Bloise R, Memmi M, Priori SG. Clinical utility gene card for: catecholaminergic polymorphic ventricular tachycardia (CPVT). Eur J Hum Genet. 2014;22(1). Scholar
  47. 47.
    Napolitano C, Bloise R, Monteforte N, Priori SG. Sudden cardiac death and genetic ion channelopathies: long QT, Brugada, short QT, catecholaminergic polymorphic ventricular tachycardia, and idiopathic ventricular fibrillation. Circulation. 2012;125(16):2027–34.PubMedCrossRefGoogle Scholar
  48. 48.
    Sumitomo N. Current topics in catecholaminergic polymorphic ventricular tachycardia. J Arrhythm. 2016;32(5):344–51.PubMedCrossRefGoogle Scholar
  49. 49.
    Campuzano O, Beltran-Alvarez P, Iglesias A, Scornik F, Perez G, Brugada R. Genetics and cardiac channelopathies. Genet Med. 2010;12(5):260–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Hayashi M, Denjoy I, Hayashi M, Extramiana F, Maltret A, Roux-Buisson N, et al. The role of stress test for predicting genetic mutations and future cardiac events in asymptomatic relatives of catecholaminergic polymorphic ventricular tachycardia probands. Europace. 2012;14(9):1344–51.PubMedCrossRefGoogle Scholar
  51. 51.
    Kannankeril PJ, Moore JP, Cerrone M, Priori SG, Kertesz NJ, Ro PS, et al. Efficacy of flecainide in the treatment of catecholaminergic polymorphic ventricular tachycardia: a randomized clinical trial. JAMA Cardiol. 2017;2(7):759–66.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121(13):1533–41.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Perrin MJ, Angaran P, Laksman Z, Zhang H, Porepa LF, Rutberg J, et al. Exercise testing in asymptomatic gene carriers exposes a latent electrical substrate of arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2013;62(19):1772–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Karlsson D, Engvall J, Ando AA, Aneq MA. Exercise testing for long-term follow-up in arrhythmogenic right ventricular cardiomyopathy. J Electrocardiol. 2017;50(2):176–83.PubMedCrossRefGoogle Scholar
  55. 55.
    Sequeira IB, Kirsh JA, Hamilton RM, Russell JL, Gross GJ. Utility of exercise testing in children and teenagers with arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol. 2009;104(3):411–3.PubMedCrossRefGoogle Scholar
  56. 56.
    Verrier RL, Klingenheben T, Malik M, El-Sherif N, Exner DV, Hohnloser SH, et al. Microvolt T-wave alternans physiological basis, methods of measurement, and clinical utility – consensus guideline by International Society for Holter and Noninvasive Electrocardiology. J Am Coll Cardiol. 2011;58(13):1309–24.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Cheung MM, Davis AM, Cohen RJ, Wilkinson JL. T wave alternans threshold in normal children. J Cardiovasc Electrophysiol. 2001;12(4):424–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Cheung MM, Weintraub RG, Cohen RJ, Karl TR, Wilkinson JL, Davis AMCRJ. T wave alternans threshold late after repair of tetralogy of Fallot. J Cardiovasc Electrophysiol. 2002;13(7):657–61.PubMedCrossRefGoogle Scholar
  59. 59.
    Alexander ME, Cecchin F, Huang KP, Berul CI. Microvolt t-wave alternans with exercise in pediatrics and congenital heart disease: limitations and predictive value. Pacing Clin Electrophysiol. 2006;29(7):733–41.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Audrey Dionne
    • 1
  • Edward T. O’Leary
    • 1
  • Shankar Baskar
    • 1
  • Vassilios J. Bezzerides
    • 2
    • 1
  • Mark E. Alexander
    • 2
    • 1
    Email author
  1. 1.Arrhythmia Service, Department of CardiologyBoston Children’s HospitalBostonUSA
  2. 2.Department of PediatricsHarvard Medical SchoolBostonUSA

Personalised recommendations