Exercise Testing After Pediatric Heart Transplantation

  • Arene ButtoEmail author
  • T. P. Singh


Heart transplantation is an established therapy in children with end-stage heart failure. Ninety percent of pediatric heart transplant recipients have congenital heart disease or cardiomyopathy as the underlying disease. Exercise performance in the early posttransplant period is affected by factors that precede transplant, such as malnutrition and deconditioning from heart failure, as well as associated medical conditions (e.g., neuromuscular disease). Improvement in exercise performance in the months following transplant may be aided by referral to a formal rehabilitation program. Performance on long-term follow-up remains subnormal due to transplant-specific factors such as cardiac autonomic denervation with resulting chronotropic incompetence and persistent left ventricular diastolic dysfunction. Exercise testing with stress echocardiography has potential utility in noninvasive surveillance for posttransplant coronary artery disease.


Heart transplant Exercise test Cardiac autonomic denervation Reinnervation 


  1. 1.
    Rossano JW, Cherikh WS, Chambers DC, Goldfarb S, Khush K, Kucheryavaya AY, et al. The registry of the international society for heart and lung transplantation: twentieth pediatric heart transplantation report-2017; focus theme: allograft ischemic time. J Heart Lung Transplant. 2017;36(10):1060–9.CrossRefGoogle Scholar
  2. 2.
    Patel JN, Kavey RE, Pophal SG, Trapp EE, Jellen G, Pahl E. Improved exercise performance in pediatric heart transplant recipients after home exercise training. Pediatr Transplant. 2008;12(3):336–40.CrossRefGoogle Scholar
  3. 3.
    Uzark K, Griffin L, Rodriguez R, Zamberlan M, Murphy P, Nasman C, et al. Quality of life in pediatric heart transplant recipients: a comparison with children with and without heart disease. J Heart Lung Transplant. 2012;31(6):571–8.CrossRefGoogle Scholar
  4. 4.
    Allen HDSR, Penny DJ, Cetta F, Feltes TF. Moss and adams heart disease in infants, children, and adolescents: including the fetus and young adult. 9th ed. Philadelphia: Wolters Kluwer; 2016.Google Scholar
  5. 5.
    Awad M, Czer LS, Hou M, Golshani SS, Goltche M, De Robertis M, et al. Early denervation and later reinnervation of the heart following cardiac transplantation: a review. J Am Heart Assoc. 2016;5(11):e004070.CrossRefGoogle Scholar
  6. 6.
    Di Carli MF, Tobes MC, Mangner T, Levine AB, Muzik O, Chakroborty P, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med. 1997;336(17):1208–16.CrossRefGoogle Scholar
  7. 7.
    Bengel FM, Ueberfuhr P, Schiepel N, Nekolla SG, Reichart B, Schwaiger M. Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med. 2001;345(10):731–8.CrossRefGoogle Scholar
  8. 8.
    Lunze FI, Colan SD, Gauvreau K, Chen MH, Perez-Atayde AR, Blume ED, et al. Cardiac allograft function during the first year after transplantation in rejection-free children and young adults. Circ Cardiovasc Imaging. 2012;5(6):756–64.CrossRefGoogle Scholar
  9. 9.
    Pahl E, Miller SA, Griffith BP, Fricker FJ. Occult restrictive hemodynamics after pediatric heart transplantation. J Heart Lung Transplant. 1995;14(6 Pt 1):1109–15.PubMedGoogle Scholar
  10. 10.
    Peterson S, Su JA, Szmuszkovicz JR, Johnson R, Sargent B. Exercise capacity following pediatric heart transplantation: a systematic review. Pediatr Transplant. 2017;21(5):e12922.CrossRefGoogle Scholar
  11. 11.
    Altamirano-Diaz LA, Nelson MD, West LJ, Khoo NS, Rebeyka IM, Haykowsky MJ. Left ventricular distensibility does not explain impaired exercise capacity in pediatric heart transplant recipients. J Heart Lung Transplant. 2013;32(1):63–9.CrossRefGoogle Scholar
  12. 12.
    Chen MH, Abernathey E, Lunze F, Colan SD, O’Neill S, Bergersen L, et al. Utility of exercise stress echocardiography in pediatric cardiac transplant recipients: a single-center experience. J Heart Lung Transplant. 2012;31(5):517–23.CrossRefGoogle Scholar
  13. 13.
    Thajudeen A, Stecker EC, Shehata M, Patel J, Wang X, McAnulty JH Jr, et al. Arrhythmias after heart transplantation: mechanisms and management. J Am Heart Assoc. 2012;1(2):e001461.CrossRefGoogle Scholar
  14. 14.
    Singh TP, Gauvreau K, Rhodes J, Blume ED. Longitudinal changes in heart rate recovery after maximal exercise in pediatric heart transplant recipients: evidence of autonomic re-innervation? J Heart Lung Transplant. 2007;26(12):1306–12.CrossRefGoogle Scholar
  15. 15.
    Giardini A, Fenton M, Derrick G, Burch M. Impairment of heart rate recovery after peak exercise predicts poor outcome after pediatric heart transplantation. Circulation. 2013;128(11 Suppl 1):S199–204.CrossRefGoogle Scholar
  16. 16.
    Chiu HH, Wu MH, Wang SS, Lan C, Chou NK, Chen SY, et al. Cardiorespiratory function of pediatric heart transplant recipients in the early postoperative period. Am J Phys Med Rehabil. 2012;91(2):156–61.CrossRefGoogle Scholar
  17. 17.
    Davis JA, McBride MG, Chrisant MR, Patil SM, Hanna BD, Paridon SM. Longitudinal assessment of cardiovascular exercise performance after pediatric heart transplantation. J Heart Lung Transplant. 2006;25(6):626–33.CrossRefGoogle Scholar
  18. 18.
    Abarbanell G, Mulla N, Chinnock R, Larsen R. Exercise assessment in infants after cardiac transplantation. J Heart Lung Transplant. 2004;23(12):1334–8.CrossRefGoogle Scholar
  19. 19.
    Dipchand AI, Manlhiot C, Russell JL, Gurofsky R, Kantor PF, McCrindle BW. Exercise capacity improves with time in pediatric heart transplant recipients. J Heart Lung Transplant. 2009;28(6):585–90.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Advanced Cardiac Therapies and Cardiac Intensive Care, Department of CardiologyBoston Children’s HospitalBostonUSA
  2. 2.Department of PediatricsHarvard Medical SchoolBostonUSA
  3. 3.Heart Failure/Transplant Service, Department of CardiologyBoston Children’s HospitalBostonUSA

Personalised recommendations