Advertisement

Future Directions in the Study of Pharmaceutical Potential of Lichens

  • Neeraj Verma
  • Bhaskar C. Behera
Chapter

Abstract

Lichens are a stable self-supporting symbiotic organism, composed of a fungal and an algal partner. In this symbiotic form, lichens produce a number of unique secondary metabolites through various biosynthetic pathways, namely, acetyl polymalonyl, shikimic acid and mevalonic acid pathways. Most of the lichen substances are phenolic compounds and are reported to have wide variety of biological actions: antioxidant, antimicrobial, antiviral, anti-inflammatory, analgesic, antipyretic, antiproliferative and cytotoxic effects. Acetyl polymalonyl-derived polyketide compounds, depsides, depsidones, dibenzofuranes, xanthones and naphthaquinones, are of great interest. Compounds from other pathways are esters, terpenes, steroids, terphenylquinones and pulvinic acid. Although manifold biological properties of lichen secondary metabolites have been recognized, their pharmaceutical potential has not been fully explored due to their slow growing nature and difficulties in their artificial cultivation. Many researchers are still working hard to discover and identify the novel lead compounds from lichens. In this chapter, attention has been given to bring in notice some pharmaceutically important lichens and their secondary metabolites and to provide a direction for the study of lichen prospect.

Keywords

Lichen Species Usnic Acid Lichen Substance Lichen Compound Orsellinic Acid 

Notes

Acknowledgements

We gratefully acknowledge the various financial supports by the Department of Biotechnology (DBT), Govt. of India, New Delhi [grant nos. BT/PR3133/BCE/08/237/2002; BT/PR8551/NDB/52/15/2006]; Council of Scientific and Industrial Research (CSIR), Govt. of India, New Delhi [grant nos. 09/670(034)/2006-EMR-I; 09/670(0046)2010/EMR-I]; and Science and Engineering Research Board (SERB), Govt. of India, New Delhi [grant no. SR/FT/LS-170/2009]. We are also thankful to the director of Agharkar Research Institute, Pune, for research facilities provided.

References

  1. Ahmadjian V (1966) Lichens. In: Henry SM (ed) Symbiosis, vol I. Academic, New York, pp 36–97Google Scholar
  2. Ahmadjian V, Heikkila H (1970) The culture and synthesis of Endocarpon pusillum and Staurothele clopima. Lichenologist 4:256–267CrossRefGoogle Scholar
  3. Airaksinen MM, Peura P, Ala-Fossi-Salokangas L et al (1986) Toxicity of plant material used as emergency food during famines in Finland. J Ethnopharmacol 18:273–296PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aleynik SI, Leo MA, Aleynik MA et al (1998) Increased circulating products of lipid peroxidation in patients with alcoholic liver disease. Alcohol Clin Exp Res 22:192–196PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bailey SM, Patel VB, Young TA et al (2001) Chronic ethanol consumption alters the glutathione/glutathione-peroxidase-1 system and protein oxidation status in rat liver. Alcohol Clin Exp Res 25:726–733PubMedCrossRefPubMedCentralGoogle Scholar
  6. Balkan J, Kanbagli O, Aykac-Toker G et al (2002) Taurine treatment reduces hepatic lipids and oxidative stress in chronically ethanol-treated rats. Biol Pharm Bull 25:1231–1233PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bazin MA, Le Lamer AC, Delcros JG et al (2008) Synthesis and cytotoxic activities of usnic acid derivatives. Bioorg Med Chem 16:8737–8744PubMedCrossRefPubMedCentralGoogle Scholar
  8. Behera BC, Makhija U (2002) Inhibition of tyrosinase and xanthine oxidase by lichen species Bulbothrix setschwanesis. Curr Sci 82:61–66Google Scholar
  9. Behera BC, Adawadkar B, Makhija U (2003) Inhibitory activity of xanthine oxidase and superoxide-scavenging activity in some taxa of the lichen family Graphidaceae. Phytomedicine 10:536–543Google Scholar
  10. Behera BC, Adawadkar B, Makhija U (2004a) Capacity of some Graphidaceous lichens to scavenge superoxide and inhibition of tyrosinase and xanthine oxidase activities. Curr Sci 87:83–87Google Scholar
  11. Behera BC, Verma N, Sonone A et al (2004b) Determination of antioxidative and anti-tyrosinase potential of lichen Usnea ghattensis in-vitro. In: Reddy SM, Khanna S (eds) Biotechnological approaches for sustainable development. Allied, New Delhi, pp 94–103Google Scholar
  12. Behera BC, Verma N, Sonone A et al (2005a) Antioxidant and antibacterial activities of lichen Usnea ghattensis in-vitro. Biotechnol Lett 27:991–995PubMedPubMedCentralGoogle Scholar
  13. Behera BC, Verma N, Sonone A et al (2005b) Evaluation of antioxidant potential of the cultured mycobiont of a lichen Usnea ghattensis. Phytother Res 19:58–64PubMedCrossRefPubMedCentralGoogle Scholar
  14. Behera BC, Adawadkar B, Makhija U (2006a) Tyrosinase—inhibitory activity in some species of the lichen family Graphidaceae. J Herb Pharmacother 6:55–69PubMedCrossRefPubMedCentralGoogle Scholar
  15. Behera BC, Adawadkar B, Makhija U (2006b) Tissue-culture of selected species of the Graphis lichen and their biological activities. Fitoterapia 77:208–215PubMedCrossRefPubMedCentralGoogle Scholar
  16. Behera BC, Verma N, Sonone A et al (2006c) Experimental studies on the growth and usnic acid production in lichen Usnea ghattensis in-vitro. Microbiol Res 161:232–237PubMedCrossRefPubMedCentralGoogle Scholar
  17. Behera BC, Verma N, Sonone A et al (2006d) Determination of antioxidative potential of lichen Usnea ghattensis in-vitro. LWT Food Sci Technol 39:80–85CrossRefGoogle Scholar
  18. Behera BC, Verma N, Sonone A et al (2009a) Optimization of culture conditions for lichen Usnea ghattensis G. Awasthi to increase biomass and antioxidant metabolite production. Food Technol Biotechnol 47:7–12Google Scholar
  19. Behera BC, Sonone A, Makhija U (2009b) Protoplast isolation from cultured lichen Usnea ghattensis, their fusion with protoplasts of Aspergillus nidulans, fusant regeneration and production of usnic acid. Folia Microbiol 54:415–418CrossRefGoogle Scholar
  20. Behera BC, Mahadik N, Morey M (2012) Antioxidative and cardiovascular-protective activities of metabolite usnic acid and psoromic acid produced by lichen species Usnea complanata under submerged fermentation. Pharm Biol 50:968–979PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bezivin C, Tomasi S, Rouaud I et al (2004) Cytotoxic activity of compounds from the lichen: Cladonia convoluta. Planta Med 70:874–877CrossRefGoogle Scholar
  22. Bhattarai HD, Paudel B, Hong SG et al (2008) Thin layer chromatography analysis of antioxidant constituents of lichens from Antarctica. J Nat Med 62:481–484PubMedCrossRefPubMedCentralGoogle Scholar
  23. Biswas K (1956) Common medicinal plants of Darjeeling and the Sikkim Himalayas. M/S Bengal Govt. Press, Calcutta, p 90Google Scholar
  24. Borkowski B, Wozniak W, Gertig H et al (1964) Bacteriostatic action of some compounds from lichen Cetraria islandica and of usnic acid. Dissertationes Pharmaceuticae 16:189–194Google Scholar
  25. Boustie J, Grube M (2005) Lichens—a promising source of bioactive secondary metabolites. Plant Genet Resour Char Utiliz 3:273–283CrossRefGoogle Scholar
  26. Brij L (1988) Traditional remedies for bone fracture among the tribals of Madhya Pradesh, India. Aryavaidyan 1:190–195Google Scholar
  27. Brij L, Upreti DK (1995) Ethnobotanical notes on three Indian lichens. Lichenologist 27:77–79CrossRefGoogle Scholar
  28. Brij L, Upreti DK, Kalakoti BS (1985) Ethnobotanical utilization of lichen by the tribals of Madhya Pradesh. J Econ Taxon Bot 7:203–204Google Scholar
  29. Brooker SG, Cambie RC, Cooper RC (1987) New Zealand medicinal plants. Heinemann, Auckland, p 63Google Scholar
  30. Brunauer G, Stocker-Worgotter E (2005) Culture of lichen fungi for future production of biologically active compounds. Symbiosis 38:187–201Google Scholar
  31. Bucar F, Schneider I, Ogmundsdottir H et al (2004) Antiproliferative lichen compounds with inhibitory activity on 12(S)-HETE production in human platelets. Phytomedicine 11:602–606PubMedCrossRefGoogle Scholar
  32. Burkholder PR, Evans AW, McVeigh I et al (1944) Antibiotic activity of lichens. Proc Natl Acad Sci USA 30:250–255PubMedCrossRefGoogle Scholar
  33. Burlando B, Ranzato E, Volante A et al (2009) Antiproliferative effects on tumour cells and promotion of keratinocyte wound healing by different lichen compounds. Planta Med 75:607–613CrossRefPubMedPubMedCentralGoogle Scholar
  34. Cardarelli MA, Serino G, Campanella L et al (1997) Antimitotic effects of usnic acid on different biological systems. Cell Mol Life Sci 53:667–672CrossRefGoogle Scholar
  35. Chooi YH, Stalker DM, Davis MA et al (2008) Cloning and sequence characterization of a non-reducing polyketide synthase gene from the lichen Xanthoparmelia semiviridis. Mycol Res 112:147–161PubMedCrossRefGoogle Scholar
  36. Chopra RN, Chopra IC, Handa KL et al (1958) Indigenous drugs of India. Academic, Calcutta, p 816Google Scholar
  37. Choudhary MI, Saima Jalil A and Atta-ur-Rahman (2005) Bioactive phenolic compounds from a medicinal lichen, Usnea longissima. Phytochem 66:2346–2350PubMedCrossRefGoogle Scholar
  38. Cohen PA, Towers GHN (1995) The anthraquinones of Heterodermia obscurata. Phytochemistry 40:911–915CrossRefGoogle Scholar
  39. Cohen PA, Hudson JB, Towers GHN (1996) Antiviral activities of anthraquinones, bianthrones and hypericin derivatives from lichens. Experientia 52:180–183CrossRefGoogle Scholar
  40. Crittenden PD, Porter N (1991) Lichen forming fungi: potential source of novel metabolites. Trends Biotechnol 9:409–414PubMedCrossRefGoogle Scholar
  41. Dayan FE, Romagni JG (2001) Lichens as a potential source of pesticides. Pestic Outlook 12:229–232CrossRefGoogle Scholar
  42. Dayan FE, Romagni JG (2002) Structural diversity of lichen metabolites and their potential for use. In: Upadhyaya R (ed) Advances in microbial toxin research and its biotechnological exploitation. Kluwer Academic/Plenum, New York, pp 151–169Google Scholar
  43. De Carvahlo EAB, Andrade PP, Silva NH et al (2005) Effect of usnic acid from the lichen Cladonia substellata on Trypanosoma cruzi in-vitro: an ultrastructural study. Micron 36:155–161CrossRefGoogle Scholar
  44. Devehat FLL, Tomasi S, Elix JA et al (2007) Stictic acid derivatives from the lichen Usnea articulata and their antioxidant activities. J Nat Prod 70:1218–1220CrossRefGoogle Scholar
  45. Elix JA (1996) Biochemistry and secondary metabolites. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 154–180Google Scholar
  46. Elo H, Matikainen J, Pelttari E (2007) Potent activity of the lichen antibiotic (+)-usnic acid against clinical isolates of vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. Naturwissenschaften 94:465–468PubMedCrossRefGoogle Scholar
  47. Endo T, Takahagi T, Kinoshita Y et al (1998) Inhibition of photosystem II of spinach by lichen-derived depsides. Biosci Biotechnol Biochem 62:2023–2027PubMedCrossRefGoogle Scholar
  48. Ernst-Russell MA, Elix JA, Chai CLL et al (1999a) Hybocarpone, a novel cytotoxic naphthazarin derivative from mycobiont cultures of the lichen Lecanora hybocarpa. Tetrahedron Lett 40:6321–6324CrossRefGoogle Scholar
  49. Ernst-Russell MA, Chai CLL, Hurne AM et al (1999b) Structure revision and cytotoxic activity of the scabrosin esters, epidithiopiperazinediones from the lichen Xanthoparmelia scabrosa. Aust J Chem 52:279–283CrossRefGoogle Scholar
  50. Ernst-Russell MA, Chai CLL, Wardlaw JH et al (2000) Euplectin and coneuplectin, new naphthopyrones from the lichen Flavoparmelia euplecta. J Nat Prod 63:129–131PubMedCrossRefPubMedCentralGoogle Scholar
  51. Esimone CO, Adikwn MU (1999) Antimicrobial activity of the cytotoxicity of Ramalina farinacea. Fitoterapia 7:428–431CrossRefGoogle Scholar
  52. Fahselt D (1994) Secondary biochemistry of lichens. Symbiosis 16:117–165Google Scholar
  53. Fazio AT, Adler MT, Bertoni MD et al (2007) Lichen secondary metabolites from the cultured lichen mycobionts of Teloschistes chrysophthalmus and Ramalina celastri and their antiviral activities. Z Naturforsch C 62:543–549PubMedCrossRefGoogle Scholar
  54. Francolini I, Norris P, Piozzi A et al (2004) Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm and formation on polymer surfaces. Antimicrob Agents Chemother 48:4360–4365PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gaikwad S, Verma N, Behera BC et al (2014) Growth promoting effects of some lichen metabolites on probiotic bacteria. J Food Sci Technol. 51:2624–2631PubMedCrossRefGoogle Scholar
  56. Gissurarson S, Sigurdsson S, Wagner H et al (1997) Effect of lobaric acid on cysteinyl-leukotriene formation and contractile activity of Guinea Pig Taenia coli. J Pharmacol Exp Ther 280:770–773PubMedGoogle Scholar
  57. Gulcin I, Oktay M, Kufrevioglu OI et al (2002) Determination of antioxidant activity of lichen Cetraria islandica (L) Ach. J Ethnopharmacol 79:325–329CrossRefGoogle Scholar
  58. Hager A, Brunauer G, Turk R et al (2008) Production and bioactivity of common lichen metabolites as exemplified by Heterodea muelleri (Hampe) Nyl. J Chem Ecol 34:113–120CrossRefGoogle Scholar
  59. Hale ME (1973) Growth. In: Ahmadjian V, Hale ME (eds) The lichens. Academic, London, pp 473–492CrossRefGoogle Scholar
  60. Haraldsdottir S, Guolaugsdottir E, Ingolfsdottir K et al (2004) Anti-proliferative effects of lichen-derived lipoxygenase inhibitors on twelve human cancer cell lines of different tissue origin in-vitro. Planta Med 70:1098–1100PubMedCrossRefPubMedCentralGoogle Scholar
  61. Hickey BJ, Lumsden AJ, Cole ALJ et al (1990) Antibiotic compounds from New Zealand plants: methyl haematommate, an anti-fungal agent from Stereocaulon ramulosum. N Z Nat Sci 17:49–53Google Scholar
  62. Hidalgo ME, Fernandez E, Quilhot W et al (1994) Antioxidant activity of depsides and depsidones. Phytochemistry 37:1585–1587PubMedPubMedCentralCrossRefGoogle Scholar
  63. Higuchi M, Miura Y, Boohene J et al (1993) Inhibition of tyrosinase activity by cultured lichen tissues and bionts. Planta Med 59:253–255PubMedCrossRefPubMedCentralGoogle Scholar
  64. Hirayama T, Fujikawa F, Kasahara T et al (1980) Anti-tumor activities of some lichen products and their degradation products. Yaku Zasshi 100:755–759CrossRefGoogle Scholar
  65. Hu S-y, Kong YC, But PPH (1980) An enumeration of the Chinese materia medica. The Chinese University, Hong Kong, p 59Google Scholar
  66. Huneck S (1999) The significance of lichens and their metabolites. Naturwissenschaften 86:559–570CrossRefGoogle Scholar
  67. Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin, p 493CrossRefGoogle Scholar
  68. Hussain MS, Fareed S, Ansari S et al (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20PubMedPubMedCentralCrossRefGoogle Scholar
  69. Ingolfsdottir K, Gudmundsdottir GF (2002) Effects of tenuiorin and methyl orsellinate from the lichen Peltigera leucophlebia on 5-/15-lipoxygenases and proliferation of malignant cell lines in-vitro. Phytomedicine 9:654–658PubMedCrossRefPubMedCentralGoogle Scholar
  70. Ingolfsdottir K, Breu W, Huneck S et al (1994) In-vitro inhibition of 5-lipoxygenase by protolichesterinic acid from Cetraria islandica. Phytomedicine 1:187–191PubMedCrossRefPubMedCentralGoogle Scholar
  71. Ingolfsdottir K, Gissurarson SR, Muller-Jakic B et al (1996) Inhibitory effects of the lichen metabolite lobaric acid on arachidonate metabolism in-vitro. Phytomedicine 2:243–246PubMedCrossRefPubMedCentralGoogle Scholar
  72. Ingolfsdottir K, Hjalmarsdottir MA, Sigurdsson A et al (1997a) In vitro susceptibility of Helicobacter pylori to protolichesterinic acid from the lichen Cetraria islandica. Antimicrob Agents Chem 41:215–217CrossRefGoogle Scholar
  73. Ingolfsdottir K, Wiedemann B, Birgisdottir M et al (1997b) Inhibitory effects of baeomycesic acid from the lichen Thamnolia subuliformis on 5-lipoxygenase in-vitro. Phytomedicine 4:125–128PubMedCrossRefPubMedCentralGoogle Scholar
  74. Ingolfsdottir K, Chung GAC, Skulason VG et al (1998) Antimycobacterial activity of lichen metabolites in-vitro. Eur J Pharm Sci 6:141–144PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ingolfsdottir K, Lee SK, Bhat KPL et al (2000) Evaluation of selected lichens from Iceland for cancer chemopreventive and cytotoxic activity. Pharm Biol 38:313–317PubMedCrossRefPubMedCentralGoogle Scholar
  76. Ingolfsdottir K (2002) Usnic acid. Phytochemistry 61:729–736PubMedCrossRefPubMedCentralGoogle Scholar
  77. Ishii H, Kurose I, Kato S (1997) Pathogenesis of alcoholic liver disease with particular emphasis on oxidative stress. J Gastroenterol Hepatol 12(Suppl):S272–S282PubMedCrossRefPubMedCentralGoogle Scholar
  78. Ivanova V, Schlegel R, Grafe U (2000) 2-Methoxy-4,5,7-trihydroxy-anthraquinone, a new lichen metabolite produced by Xanthoria parietina. Pharmazie 55:785–786PubMedPubMedCentralGoogle Scholar
  79. Jayaprakash GK, Jaganmohan RL (2000) Phenolic constituents from the lichen Parmotrema stuppeum hale and their antioxidant activity. Zeitsch Fur Naturf 55:1018–1022Google Scholar
  80. Karagoz A, Dogruoz N, Zeybek Z et al (2009) Antibacterial activity of some lichen extracts. J Med Plants Res 3:1034–1039Google Scholar
  81. Kari PR, Tanaina Plantlore, Denaina Ketuna (1987) An ethnobotany of the Denaina Indians of South-Central Alaska. USDI, National park service, Alaska Region, p 176Google Scholar
  82. Karunaratne V, Choudhary MI, Ali S et al (2009) Natural novel antioxidants. US Patent 20090048332. Publication info: http://www.fags.orglpatents/app/20090048332
  83. Kim JW, Song KS, Chang HW et al (1996) Two phenolic compounds isolated from Umbilicaria esculenta as phospholipase A2 inhibitors. Hanguk Kyunhakhoechi 24:237–242Google Scholar
  84. Kokwaro JO (1976) Medicinal plants of East Africa. East African Literature Bureau, Lampala, Nairobi, Dar es Salaam. p 384Google Scholar
  85. Koyama M, Takahashi K, Chou T-C et al (1989) Intercalating agents with covalent bond forming capability. A novel type of potential anticancer agents. 2. Derivatives of chrysophanol and emodin. J Med Chem 32:1594–1599PubMedCrossRefPubMedCentralGoogle Scholar
  86. Kranner I, Cram WJ, Zorn M et al (2005) Antioxidant and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci USA 102:3141–3146PubMedCrossRefPubMedCentralGoogle Scholar
  87. Kristmundsdottir T, Aradottir HA, Ingolfsdottir K et al (2002) Solubilization of the lichen metabolite (+)-usnic acid for testing in tissue culture. J Pharm Pharmacol 54:1447–1452PubMedCrossRefPubMedCentralGoogle Scholar
  88. Kumar KCS, Muller K (1999) Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophoric, usnic, and diffractaic acid on human keratinocyte growth. J Nat Prod 62:821–823PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kupchan SM, Kopperman HL (1975) L-Usnic acid: tumor inhibitor isolated from lichens. Experientia 31:625PubMedCrossRefPubMedCentralGoogle Scholar
  90. Lauterwein M, Oethinger M, Belsner K et al (1995) In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid, and (-)-usnic acid against aerobic and anaerobic microorganisms. Antimicrob Agents Chemother 39:2541–2543PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lavie G, Valentine F, Levin B et al (1989) Studies of the mechanisms of action of the antiretroviral agents hypericin and pseudohypericin. Proc Natl Acad Sci USA 86:5963–5967PubMedCrossRefPubMedCentralGoogle Scholar
  92. Lawrey JD (1986) Biological role of lichen substances. Bryologist 89:11–122Google Scholar
  93. Lawrey JD (1995) The chemical ecology of lichen mycoparasites. Can J Bot 73:603–608CrossRefGoogle Scholar
  94. Lopes TIB, Coelho RG, Yoshida NC et al (2008) Radical scavenging activity of Orsellinates. Chem Pharm Bull 56:1551–1554CrossRefGoogle Scholar
  95. Mahadik N, Morey MV, Behera BC et al (2011) Cardiovascular-protective, antioxidative and antimicrobial properties of natural thallus of lichen Usnea complanata. LAJP 30:220–228Google Scholar
  96. Manojlovic NT, Solujic S, Sukdolak S et al (1998) Anthraquinones from the lichen Xanthoria parietina. J Serb Chem Soc 63:7–11Google Scholar
  97. Manojlovic NT, Novakovic M, Stevovic V et al (2005) Antimicrobial metabolites from three Serbian Caloplaca. Pharm Biol 43:718–722CrossRefGoogle Scholar
  98. Matsubara H, Kinoshita K, Koyama K et al (1997) Antityrosinase activity of lichen metabolites and their synthetic analogues. J Hatt Bot Lab 83:179–185Google Scholar
  99. Mayer M, O’Neill MA, Murray KE et al (2005) Usnic acid: a non-genotoxic compound with anti-cancer properties. Anticancer Drugs 16:805–809PubMedCrossRefPubMedCentralGoogle Scholar
  100. Mc Naught A, Wilkinson A (1997) IUPAC compendium of chemical terminology, 2nd edn. Royal Society of Chemistry, Cambridge, p 148Google Scholar
  101. McEvoy M, Gauslaa Y, Solhaug KA (2007) Changes in pools of depsidones and melanins, and their function, during growth and acclimation under contrasting natural light in the lichen Lobaria pulmonaria. New Phytol 175:271–282PubMedCrossRefPubMedCentralGoogle Scholar
  102. Miao V, Coffet-LeGal MF, Brown D et al (2001) Genetic approaches to harvesting lichen products. Trends Biotechnol 19:349–355CrossRefGoogle Scholar
  103. Mishchenko NP, Stepanenko LS, Krivoshchekova OE et al (1980) Anthraquinones of the lichen Asahinea chrysantha. Chem Nat Compd (English Translation) 16:117–121CrossRefGoogle Scholar
  104. Mitrovic T, Stamenkovic S, Cvetkovic V et al (2011a) Lichens as source of versatile bioactive compounds. Biol Nyss 2:1–6Google Scholar
  105. Mitrovic T, Stamenkovic S, Cvetkovic V et al (2011b) Antioxidant, antimicrobial and antiproliferative activities of five lichen species. Int J Mol Sci 12:5428–5448PubMedPubMedCentralCrossRefGoogle Scholar
  106. Molnar K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch 65:157–173CrossRefGoogle Scholar
  107. Moskalenko SA (1986) Preliminary screening of far-Eastern ethnomedicinal plants for antibacterial activity. J Ethnopharmacol 15:221–259CrossRefGoogle Scholar
  108. Muller K (2001) Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol 56:9–16CrossRefGoogle Scholar
  109. Muller K, Prinz H, Gawlik I et al (1997) Simple analogues of anthralin: unusual specificity of structure and antiproliferative activity. J Med Chem 40:3773–3780PubMedCrossRefPubMedCentralGoogle Scholar
  110. Mutlu-Turkoglu U, Dogru-Abbasoglu S, Aykac TG et al (2000) Increased lipid and protein oxidation and DNA damage in patients with chronic alcoholism. J Lab Clin Med 136:287–291PubMedCrossRefPubMedCentralGoogle Scholar
  111. Nash TH III (ed) (1996) Lichen biology, Cambridge University Press, CambridgeGoogle Scholar
  112. Nash TH III (ed) (2008) Lichen biology, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  113. Nishitoba Y, Nishimura H, Nishiyama T et al (1987) Lichen acids, plant growth inhibitors from Usnea longissima. Phytochemistry 26:3181CrossRefGoogle Scholar
  114. Nordmann R, Ribiere C, Rouach H (1992) Implication of free radical mechanisms in ethanol-induced cellular injury. Free Radic Biol Med 12:219–240PubMedCrossRefPubMedCentralGoogle Scholar
  115. Novaretti R, Lemordant D (1990) Plants in the traditional medicine of the Ubaye Valley. J Ethnopharmacol 30:1–34PubMedCrossRefPubMedCentralGoogle Scholar
  116. Odabasoglu F, Aslan A, Cakir A et al (2004) Comparison of antioxidant activity and phenolic content of three lichen species. Phytother Res 18:938–941CrossRefPubMedPubMedCentralGoogle Scholar
  117. Ogmundsdottir HM, Zoega GM, Gissurarson SR et al (1998) Anti-proliferative effects of lichen-derived inhibitors of 5-lipoxygenase on malignant cell-lines and mitogen-stimulated lymphocytes. J Pharm Pharmacol 50:107–115PubMedCrossRefPubMedCentralGoogle Scholar
  118. Oksanen I (2006) Ecological and biotechnological aspects of lichens. Appl Microbiol Biotechnol 73:723–734CrossRefPubMedPubMedCentralGoogle Scholar
  119. Okuyama E, Umeyama K, Yamazaki M et al (1995) Usnic acid and diffractaic acid as analgesic and antipyretic components of Usnea diffracta. Planta Med 61:113–115PubMedCrossRefPubMedCentralGoogle Scholar
  120. Otsuka H, Komiya T, Tsukumi M et al (1972) Studies on anti-inflammatory drugs. Anti-inflammatory activity of crude drugs and plants. (II). J Takeda Res Lab 31:247–254Google Scholar
  121. Papadopoulou P, Tzakou O, Vagias C et al (2007) b-Orcinol metabolites from the lichen Hypotrachyna revoluta. Molecules 12:997–1005PubMedPubMedCentralCrossRefGoogle Scholar
  122. Paudel B, Bhattarai HD, Lee JS et al (2008) Antioxidant activity of polar lichens from King George Island (Antarctica). Polar Biol 31:605–608CrossRefGoogle Scholar
  123. Paull KD, Zee Cheng RK, Cheng CC (1976) Some substituted naphthazarins as potential anticancer agents. J Med Chem 19:337–339PubMedCrossRefPubMedCentralGoogle Scholar
  124. Pengsuparp T, Cai L, Constant H et al (1995) Mechanistic evaluation of new plant-derived compounds that inhibit HIV-1 reverse transcriptase. J Nat Prod 58:1024–1031CrossRefGoogle Scholar
  125. Perry NB, Benn MH, Brennan NJ et al (1999) Antimicrobial, antiviral and cytotoxic activity of New Zealand lichens. Lichenologist 31:627–636CrossRefGoogle Scholar
  126. Petrzik K, Vondrak J, Bartak M et al (2014) Lichens—a new source or yet unknown host of herbaceous plant viruses? Eur J Plant Pathol 138:549–559CrossRefGoogle Scholar
  127. Rankovic B, Misic M, Sukdolak S (2007a) Antimicrobial activity of the lichens Cladonia furcata, Parmelia caperata, Parmelia pertusa, Hypogymnia physodes and Umbilicaria polyphylla. Br J Biomed Sci 64:143–148PubMedCrossRefPubMedCentralGoogle Scholar
  128. Rankovic B, Misic M, Sukdolak S (2007b) Evaluation of antimicrobial activity of the lichens Lasallia pustulata, Parmelia sulcata, Umbilicaria crustulosa and Umbilicaria cylindrica. Microbiology 76:723–727CrossRefGoogle Scholar
  129. Rastogi RP, Mehrotra BN (1993) Compendium of Indian medicinal plants, Vol II (1970–1979). Central Drug Research Institute, Lucknow and Publications and Information Directorate, CSIR, New Delhi, pp 169–170Google Scholar
  130. Rezanka T, Sigler K (2007) Hirtusneanoside, an unsymmetrical dimeric tetrahydroxanthone from the lichen Usnea hirta. J Nat Prod 70:1487–1491PubMedCrossRefPubMedCentralGoogle Scholar
  131. Richardson DHS (1988) Medicinal and other economic aspects of lichens. In: Galun M (ed) CRC handbook of lichenology, vol III. CRS, Boca Raton, FL, pp 93–108Google Scholar
  132. Russo A, Piovano M, Lombardo L et al (2006) Pannarin inhibits cell growth and induces cell death in human prostate carcinoma DU145 cells. Anticancer Drugs 17:1163–1169PubMedCrossRefPubMedCentralGoogle Scholar
  133. Russo A, Piovano M, Lombardo L et al (2008) Lichen metabolites prevent UV light and nitric-oxide mediated plasmid DNA damage and induce apoptosis in human melanoma cells. Life Sci 83:468–474PubMedPubMedCentralCrossRefGoogle Scholar
  134. Saklani A, Upreti DK (1992) Folk uses of some lichens in Sikkim. J Ethnopharm 37:229–233CrossRefGoogle Scholar
  135. Schinazi RF, Chu CK, Babu JR et al (1990) Anthraquinones as a new class of antiviral agents against human immunodeficiency virus. Antiviral Res 13:265–272PubMedCrossRefGoogle Scholar
  136. Schmeda-Hirschmann G, Tapia A, Lima B et al (2008) A new antifungal and antiprotozoal depside from the Andean lichen Protousnea poeppigii. Phytother Res 22:349–355PubMedPubMedCentralCrossRefGoogle Scholar
  137. Schneider A (1904) A guide to the study of lichens. Knight and Miller, Boston, MA, p 234CrossRefGoogle Scholar
  138. Schwendener S (1868) Uber die Beziehungen zwischen Algen und Flechtengonidien. Botanische Zeitung (Berlin)\Bot Zeitung 26:289–292Google Scholar
  139. Seo C, Yim JH, Lee HK et al (2008) Stereocalpin A, a bioactive cyclic depsipeptide from the Antarctic lichen Stereocaulon alpinum. Tetrahedron Lett 49:29–31CrossRefGoogle Scholar
  140. Seo C, Sohn JH, Ahn JS et al (2009) Protein tyrosine phosphatase 1B inhibitory effects of depsidone and pseudodepsidone metabolites from the Antarctic lichen Stereocaulon alpinum. Bioorg Med Chem Lett 19:2801–2803PubMedPubMedCentralCrossRefGoogle Scholar
  141. Smith GW (1973) Arctic pharmacognosia. Arctic 26:328–333Google Scholar
  142. Stepanenko LS, Krivoshchekova OE, Dmitrenok PS et al (1997) Quinones of Cetraria islandica. Phytochemistry 46:565–568CrossRefGoogle Scholar
  143. Stocker-Worgotter E (2005) Approaches to a biotechnology of lichen forming fungi: induction of polyketide pathways and the formation of chemosyndromes in axenically cultured mycobionts. Recent Res Dev Phytochem 9:115–131Google Scholar
  144. Stocker-Worgotter E, Turk R (1988) Culture of the cyanobacterial lichen Peltigera didactyla from soredia under laboratory conditions. Lichenologist 20:369–376CrossRefGoogle Scholar
  145. Stubler D, Buchenauer H (1996) Antiviral activity of the glucan lichenan (poly-β{1→3, 1→4} D-anhydroglucose) 1. Biological activity in tobacco plants. J Phytopathol 144:37–43CrossRefGoogle Scholar
  146. Tay T, Turk AO, Yılmaz M et al (2004) Evaluation of the antimicrobial activity of the acetone extract of the lichen Ramalina farinacea and its (+)-usnic acid, norstictic acid and protocetraric acid constituents. Z Naturforsch 59c:384–388CrossRefGoogle Scholar
  147. Taylor TN, Hass H, Remy W et al (1995) The oldest fossil lichen. Nature 378:244–1CrossRefGoogle Scholar
  148. Turk AO, Yilmaz M, Kivanc M et al (2003) The antimicrobial activity of extracts of the lichen Cetraria aculeata and its protolichesterinic acid constituent. Z Naturforsch C 58:850–854PubMedCrossRefPubMedCentralGoogle Scholar
  149. Upreti DK, Chatterjee S (2007) Significance of lichens and their secondary metabolites: a review. In: Ganguli BN, Deshmukh SK (eds) Fungi multifaceted microbes. Anamaya, New Delhi, pp 169–188Google Scholar
  150. Vartia KO (1973) Antibiotics in lichens. In: Ahmadjiian V, Hale ME (eds) The lichens, 3rd edn. Academic, New York, pp 547–561CrossRefGoogle Scholar
  151. Verma N (2011) Studies on antioxidant activities of some lichen metabolites developed in-vitro, Shodh ganga, Indian ETD Repository, Issue 2 Sept 2011Google Scholar
  152. Verma N, Behera BC, Makhija U (2008a) Antioxidant and hepatoprotective activity of a lichen Usnea ghattensis in-vitro. Appl Biochem Biotechnol 151:167–181PubMedCrossRefPubMedCentralGoogle Scholar
  153. Verma N, Behera BC, Sonone A et al (2008b) Cell aggregates derived from natural lichen thallus fragments: antioxidant activities of lichen metabolites developed in-vitro. Nat Prod Commun 3:1911–1918Google Scholar
  154. Verma N, Behera BC, Sonone A et al (2008c) Lipid peroxidation and tyrosinase inhibition by lichen symbionts grown in-vitro. Afr J Biochem Res 2:225–231Google Scholar
  155. Verma N, Behera BC, Parizadeh H et al (2011) Bactericidal activity of some lichen secondary compounds of Cladonia ochrochlora, Parmotrema nilgherrensis and Parmotrema sancti-angelii. Int J Drug Dev Res 3:222–232Google Scholar
  156. Verma N, Behera BC, Sharma BO (2012a) Glucosidase inhibitory and radical scavenging properties of lichen metabolites salazinic acid, sekikaic acid and usnic acid. Hacettepe J Biol Chem 40:7–21Google Scholar
  157. Verma N, Behera BC, Joshi A (2012b) Studies on nutritional requirement for the culture of lichen Ramalina nervulosa and Ramalina pacifica to enhance the production of antioxidant metabolites. Folia Microbiol 57:107–114CrossRefGoogle Scholar
  158. Yamamoto Y, Mizuguchi R, Yamada Y (1985) Tissue culture of Usnea rubescens and Ramalina yasudae and production of usnic acid in their cultures. Agric Biol Chem 49:3347–3348Google Scholar
  159. Yamamoto Y, Miura Y, Higuchi M et al (1993) Using lichen tissue culture in modern biology. Bryologist 96:384–393CrossRefGoogle Scholar
  160. Yamamoto Y, Miura Y, Kinoshita Y et al (1995) Screening of tissue cultures and thalli of lichens and some of their active constituents for inhibition of tumor promoter induced Epstein-Barr virus activation. Chem Pharm Bull 43:1388–1390PubMedCrossRefGoogle Scholar
  161. Yamamoto Y, Kinoshita Y, Matsubara H et al (1998) Screening of biological activities and isolation of biological active compounds from lichens. Recent Res Dev Phytochem 2:23–24Google Scholar
  162. Yoshimura I, Kurokawa T, Nakno T et al (1987) A preliminary report of cultures of Cladonia vulcani and the effects of the hydrogen ion concentration on them. Bull Kochi Gakuen Coll 18:335–343Google Scholar
  163. Yoshimura I, Kurokawa T, Nakno T et al (1989) Production of secondary metabolic substances by cultured tissue of Usnea flexilis. Bull Kochi Gakuen Coll 20:535–540Google Scholar
  164. Yoshimura I, Kurokawa T, Kanda H (1990a) Tissue culture of some Antarctic lichens preserved in the refrigerator. Proc NIPR Symp Polar Biol 3:224–228Google Scholar
  165. Yoshimura I, Kurokawa T, Yamamoto Y et al (1990b) Thallus formation of Usnea rubescens and Peltigera praetextata in-vitro. Bull Kochi Gakuen Coll 21:565–576Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Neeraj Verma
    • 1
  • Bhaskar C. Behera
    • 1
  1. 1.Mycology and Plant Pathology Group, Plant Science DivisionAgharkar Research InstitutePuneIndia

Personalised recommendations