Advertisement

Studies on Antioxidant Properties of Lichen Secondary Metabolites

  • Marijana Kosanić
  • Branislav Ranković
Chapter

Abstract

At present time, it is suspected that much used synthetic antioxidants have toxic and carcinogenic effects. Consequently, there is a growing interest towards finding new antioxidants of natural resources without any undesirable effect. Numerous in vitro studies on plants, micro- and macroalgae, macromycetes and lichens strongly support the fact that their constituents with antioxidant capacity are capable of exerting protective effects against oxidative stress in biological systems. Therefore, it is of prime importance to utilize natural antioxidants for their protective effect against oxidative stress and physiological dysfunctions. In the quest for novel natural antioxidant sources, our prime interest has focused on lichens. In recent time, numerous studies point to the importance of lichens in the neutralization of free radicals. Lichens are rich in secondary metabolites, primarily phenols, which are well known for its antioxidant properties. Because of that, the present chapter focuses on the role of lichens and their secondary metabolites in combating danger posed by overproduced free radicals.

References

  1. Ahmad S, Arshad MA, Ijaz S et al (2014) Review on methods used to determine antioxidant activity. Int J Multidiscip Res Dev 1:35–40Google Scholar
  2. Aligiannis N, Mitaku S, Tsitsa-Tsardis E et al (2003) Methanolic extract of Verbascum macrurum as a source of natural preservatives against oxidative rancidity. J Agric Food Chem 51:7308–7312PubMedCrossRefGoogle Scholar
  3. Ananthi R, Tinabaye A, Selvaraj G (2015) Antioxidant study of usnic acid and its derivative usnic acid diacetate. Int J Adv Res Technol 4:356–366Google Scholar
  4. Aoussar N, Manzali R, Nattah I et al (2017) Chemical composition and antioxidant activity of two lichens species (Pseudevernia furfuracea L. and Evernia prunastri L.) collected from Morocco. JMES 8:1968–1976Google Scholar
  5. Apak R, Güçlü K, Özyürek M et al (2004) A novel total antioxidant capacity index for dietary polyphenols, vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine: the CUPRAC method. J Agric Food Chem 52:7970–7981PubMedCrossRefGoogle Scholar
  6. Apak R, Gorinstein S, Bohm V et al (2013) Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC technical report). Pure Appl Chem 85:957–998CrossRefGoogle Scholar
  7. Aslan A, Güllüce M, Sökmen M et al (2006) Antioxidant and antimicrobial properties of the lichens Cladonia foliacea, Dermatocarpon miniatum, Evernia divaricata, Evernia prunastri and Neofuscella pulla. Pharm Biol 44:247–252CrossRefGoogle Scholar
  8. Atalay F, Halici MB, Mavi AA et al (2011) Antioxidant phenolics from Lobaria pulmonaria (L.) Hoffm. and Usnea longissima Ach. Lichen species. Turk J Chem 35:647–661Google Scholar
  9. Barroso MF, De-los-Santos-Alvarez N, Delerue-Matos C et al (2011) Towards a reliable technology for antioxidant capacity and oxidative damage evaluation: electrochemical (bio) sensors. Biosens Bioelectron 30:1–12PubMedCrossRefGoogle Scholar
  10. Behera BC, Verma N, Sonone A et al (2005) Antimicrobial activity of various solvent extracts of Lichen Usnea ghattensis. Agarkar Research Institute, Pune, India. Biotechnol Lett 27:991–995PubMedCrossRefPubMedCentralGoogle Scholar
  11. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76PubMedCrossRefGoogle Scholar
  12. Benzie IFF, Szeto YT (1999) Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J Agric Food Chem 47:633–636PubMedCrossRefGoogle Scholar
  13. Betteridge DJ (2000) What is oxidative stress? Metabolism 49:3–8PubMedCrossRefGoogle Scholar
  14. Bhattarai HD, Paude B, Lee HS et al (2008a) Antioxidant activity of Sanionia uncinata, a polar mass species from King George Island, Antarctica. Phytother Res 22:1635–1639PubMedCrossRefGoogle Scholar
  15. Bhattarai HD, Paudel B, Hong SG et al (2008b) Thin layer chromatography analysis of antioxidant constituents of lichens from Antarctica. J Nat Med 62:481–484PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bondet V, Brand-Williams W, Berset C (1997) Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. Food Sci Technol 30:609–615Google Scholar
  17. Bors W, Heller W, Michel C et al (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 186:343–355PubMedCrossRefGoogle Scholar
  18. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30CrossRefGoogle Scholar
  19. Brisdelli F, Perilli M, Sellitri D et al (2013) Cytotoxic activity and antioxidant capacity of purified lichen metabolites: an in vitro study. Phytother Res 27:431–437PubMedCrossRefGoogle Scholar
  20. Buçukoglu TZ, Albayrak S, Halici MG et al (2013) Antimicrobial and antioxidant activities of extracts and lichen acids obtained from some Umbilicaria species from Central Anatolia, Turkey. J Food Process Preserv 37:1103–1110CrossRefGoogle Scholar
  21. Chevion S, Roberts MA, Chevion M (2000) The use of cyclic voltammetry for the evaluation of antioxidant capacity. Free Radic Biol Med 28:860–870PubMedCrossRefGoogle Scholar
  22. Choudhary MI, Ali S, Thadhani VM et al (2009) Natural novel antioxidants, Patent Application Number: 11/838567, Publication Date 02/19/2009Google Scholar
  23. Coruh N, Celep AGS, Ozgokçe F et al (2007) Antioxidant capacities of Gundelia tournefortii L. extracts and inhibition on glutathione-S-transferase activity. Food Chem 100(3):1249–1253CrossRefGoogle Scholar
  24. de Barros Alves GM, de Sousa Maia MB, de Souza FE et al (2014) Expectorant and antioxidant activities of purified fumarprotocetraric acid from Cladonia verticillaris lichen in mice. Pulm Pharmacol Ther 27:139–143PubMedCrossRefGoogle Scholar
  25. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95PubMedCrossRefGoogle Scholar
  26. Es-Safi N, Khlifi S, Kerhoas L et al (2006) Iridoid glucosides from the aerial parts of Globularia alypum L. (Globulariaceae). Chem Pharm Bull 54:85–88PubMedCrossRefGoogle Scholar
  27. Folin O, Ciocalteu V (1927) Tyrosine and tryptophan determination in proteins. J Biol Chem 73:627–650Google Scholar
  28. Ganesan A, Thangapandian M, Ponnusamy P et al (2015) Antioxidant and antibacterial activity of Parmeliod lichens from Shevaroy hills of Eastern Ghats, India. Int J Pharm Tech Res 8:13–23Google Scholar
  29. Ganesan A, Thangapandian M, Ponnusamy P et al (2017) Antibacterial and antioxidant activity of Parmotrema reticulatum obtained from Eastern Ghats, Southern India. Biomed Res 28:1593–1597Google Scholar
  30. Gulcin I, Oktay M, Kufrevioglu OI et al (2002) Determination of antioxidant activity of lichen Cetraria islandica (L) Ach. J Ethnopharmacol 79:325–329PubMedCrossRefGoogle Scholar
  31. Halliwell B (1996) Antioxidants in human health and disease. Annu Rev Nutr 16(1):33–50PubMedCrossRefGoogle Scholar
  32. Hidalgo ME, Fernández E, Quilhot W et al (1994) Antioxidant activity of depsides and depsidones. Phytochemistry 37:1585–1587PubMedCrossRefGoogle Scholar
  33. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856PubMedCrossRefPubMedCentralGoogle Scholar
  34. Huda-Faujan N, Noriham A, Norrakiah AS et al (2009) Antioxidant activity of plants methanolic extracts containing phenolic compounds. Afr J Biotechnol 8:484–489Google Scholar
  35. Jayaprakasha GK, Rao LJ (2000) Phenolic constituents from the lichen Parmotrema stuppeum (Nyl.) Hale and their antioxidant activity. Z Naturforsch 55:1018–1022CrossRefGoogle Scholar
  36. Kekuda PTR, Vinayaka KS, Kumar PSV et al (2009) Antioxidant and antibacterial activity of lichen extracts, honey and their combination. J Pharm Res 2:1875–1878Google Scholar
  37. Kekuda TRP, Raghavendra HL, Swathi D et al (2012) Antifungal and cytotoxic activity of Everniastrum cirrhatum (Fr.) Hale. Chiang Mai J Sci 39:76–83Google Scholar
  38. Kosanić M, Ranković B (2011a) Lichens as possible sources of antioxidants. Pak J Pharm Sci 24:165–170PubMedGoogle Scholar
  39. Kosanić M, Ranković B (2011b) Antioxidant and antimicrobial properties of some lichens and their constituents. J Med Food 14:1624–1630PubMedCrossRefGoogle Scholar
  40. Kosanić M, Ranković B, Vukojević J (2011) Antioxidant properties of some lichen species. J Food Sci Technol 48:584–590PubMedCrossRefGoogle Scholar
  41. Kosanić M, Ranković B, Stanojković T (2012a) Antioxidant, antimicrobial, and anticancer activities of three Parmelia species. J Sci Food Agric 92:1909–1916PubMedCrossRefGoogle Scholar
  42. Kosanić M, Ranković B, Stanojković T (2012b) Antioxidant, antimicrobial and anticancer activity of 3 Umbilicaria species. J Food Sci 77:T20–T25PubMedCrossRefGoogle Scholar
  43. Kosanić M, Ranković B, Stanojković T (2013a) Investigation of selected Serbian lichens for antioxidant, antimicrobial and anticancer properties. J Anim Plant Sci 23:1628–1633Google Scholar
  44. Kosanić M, Manojlović N, Janković S et al (2013b) Evernia prunastri and Pseudevernia furfuracea lichens and their major metabolites as antioxidant, antimicrobial and anticancer agents. Food Chem Toxicol 53:112–118PubMedCrossRefGoogle Scholar
  45. Kosanić M, Šeklić D, Marković S et al (2014a) Evaluation of antioxidant, antimicrobial and anti cancer properties of selected lichens from Serbia. Dig J Nanomater Bios 9:273–287Google Scholar
  46. Kosanić M, Ranković B, Stanojković T et al (2014b) Cladonia lichens and their major metabolites as possible natural antioxidant, antimicrobial and anticancer agents. LWT Food Sci Technol 59:518–525CrossRefGoogle Scholar
  47. Kosanić M, Ranković B, Stanojković T et al (2014c) Biological activities and chemical composition of lichens from Serbia. EXCLI J 13:1226–1238PubMedPubMedCentralGoogle Scholar
  48. Kosanić M, Ranković B, Stanojković T et al (2016) Lasallia pustulata lichen as possible natural antigenotoxic, antioxidant, antimicrobial and anticancer agent. Cytotechnology 68:999–1008PubMedCrossRefPubMedCentralGoogle Scholar
  49. Kosanić M, Ristić S, Stanojković T et al (2018) Extracts of five Cladonia lichens as sources of biologically active compounds. Farmacia 66:644–651CrossRefGoogle Scholar
  50. Kumar SVP, Kekuda TRP, Vinayaka KS et al (2010a) Studies on antibacterial, anthelmintic and antioxidant activities of a macrolichen Parmotrema pseudotinctorum (des. Abb.) Hale (parmeliaceae) from Bhadra wildlife sanctuary, Karnataka. Int J Pharm Tech Res 2:1207–1214Google Scholar
  51. Kumar SVP, Prashith Kekuda TR, Vinayaka KS et al (2010b) Anthelmintic and antioxidant efficacy of two macrolichens of Ramalinaceae. Phcog J 1:4Google Scholar
  52. Kumar J, Dhar P, Tayade AB et al (2014) Antioxidant capacities, phenolic profile and cytotoxic effects of saxicolous lichens from trans-himalayan cold desert of Ladakh. PLoS One 9(6):e98696.  https://doi.org/10.1371/journal.pone.0098696 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lobo V, Patil A, Phatak A et al (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118–126PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lohézic-Le Dévéhat F, Tomasi S, Elix JA et al (2007) Stictic acid derivatives from the lichen Usnea articulate and their antioxidant activities. J Nat Prod 70:1218–1220PubMedCrossRefGoogle Scholar
  55. Lopes TIB, Coelho RG, Yoshida NC et al (2008) Radical scavenging activity of orsellinates. Chem Pharm Bull 56:1551–1554PubMedCrossRefGoogle Scholar
  56. Lu Y, Foo LY (2001) Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem 75:197–202CrossRefGoogle Scholar
  57. Manojlovic NT, Vasiljevic PJ, Gritsanapan W et al (2010) Phytochemical and antioxidant studies of Laurera benguelensis growing in Thailand. Biol Res 43:169–176PubMedCrossRefGoogle Scholar
  58. Manojlović N, Ranković B, Kosanić M et al (2012) Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine 19:1166–1172PubMedCrossRefPubMedCentralGoogle Scholar
  59. Mastan A, Sreedevi B, Kumari J et al (2014) Evaluation of the in vitro antioxidant and antibacterial activities of secondary metabolites produced from lichens. Asian J Pharm Clin Res 7:193–198Google Scholar
  60. Melo MG, dos Santos JP, Serafini MR et al (2011) Redox properties and cytoprotective actions of atranorin, a lichen secondary metabolite. Toxicol In Vitro 25:462–468PubMedCrossRefPubMedCentralGoogle Scholar
  61. Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal. Polish J Environ Stud 15:523–530Google Scholar
  62. Milardovic S, Ivekovic D, Grabaric BS (2006) A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry 68:175–180PubMedCrossRefGoogle Scholar
  63. Mitrović T, Stamenković S, Cvetković V et al (2011) Antioxidant, antimicrobial and antiproliferative of five lichen species. Int J Mol Sci 12:5428–5448PubMedPubMedCentralCrossRefGoogle Scholar
  64. Moure A, Cruz JM, Franco D et al (2001) Natural antioxidants from residual sources. Food Chem 72:145–171CrossRefGoogle Scholar
  65. Naveena BM, Sen AR, Kingsly RP et al (2008) Antioxidant activity of pomegranate rind powder extract in cooked chicken patties. Int J Food Sci Technol 43(10):1807–1812CrossRefGoogle Scholar
  66. Odabasoglu F, Aslan A, Cakir A et al (2004) Comparison of antioxidant activity and phenolic content of three lichen species. Phytother Res 18:938–941PubMedCrossRefPubMedCentralGoogle Scholar
  67. Odabasoglu F, Aslan A, Cakir A et al (2005) Antioxidant activity, reducing power phenolic content of some lichen species. Fitoterapia 76:216–219PubMedCrossRefGoogle Scholar
  68. Odabasoglu F, Cakir A, Suleyman H et al (2006) Gastroprotective and antioxidant effects of usnic acid on indomethacin-induced gastric ulcer in rats. J Ethnopharmacol 103:59–65PubMedCrossRefGoogle Scholar
  69. Papadopoulou P, Tzakou O, Vagias C et al (2007) Beta-orcinol metabolites from the lichen Hypotrachyna revolute. Molecules 12:997–1005PubMedPubMedCentralCrossRefGoogle Scholar
  70. Paudel B, Bhattarai HD, Lee JS et al (2008) Antioxidant activity of polar lichens from King George Island (Antarctica). Polar Biol 31:605–608CrossRefGoogle Scholar
  71. Pavithra GM, Vinayaka KS, Rakesh KN et al (2013) Antimicrobial and antioxidant activities of a macrolichen Usnea pictoides G. Awasthi (Parmeliaceae). J Appl Pharm Sci 3:154–160Google Scholar
  72. Pokorny J, Yanishlieva N, Gordan M (2001) Antioxidants in food: practical applications. Woodhead, CambridgeCrossRefGoogle Scholar
  73. Poornima G, Kekuda PTR, Vinayaka KS (2012) Antioxidant efficacy of Olea dioica Roxb (Oleaceae) leaves. Biomedicine 32:506–510Google Scholar
  74. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302PubMedCrossRefGoogle Scholar
  75. Ramachandra Shajyothi C, Padmalatha RS (2012) Antioxidant activity of Alstonia scholaris extracts containing flavonoids and phenolic compounds. Int J Pharm Pharm Sci 4:424–426Google Scholar
  76. Ranković B, Ranković D, Marić D (2010a) Antioxidant and antimicrobial activity of some lichen species. Microbiology 79:809–815CrossRefGoogle Scholar
  77. Ranković B, Ranković D, Kosanić M et al (2010b) Antioxidant and antimicrobial properties of the lichen Anaptychya ciliaris, Nephroma parile, Ochrolechia tartarea and Parmelia centrifuga. Cent Eur J Biol 5:649–655Google Scholar
  78. Ranković B, Kosanić M, Stanojković T (2011) Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. BMC Complement Altern Med.  https://doi.org/10.1186/1472-6882-11-97
  79. Ranković B, Kosanić M, Stanojković T et al (2012) Biological activities of Toninia candida and Usnea barbata together with their norstictic acid and usnic acid constituents. Int J Mol Sci 13:14707–14722PubMedPubMedCentralCrossRefGoogle Scholar
  80. Ranković B, Kosanić M, Stanojković T (2014a) Stereocaulon paschale Lichen as antioxidant, antimicrobial and anticancer agent. Farmacia 62:306–317Google Scholar
  81. Ranković B, Kosanić M, Manojlovic N et al (2014b) Chemical composition of Hypogymnia physodes lichen and biological activities of some its major metabolites. Med Chem Res 23:408–416CrossRefGoogle Scholar
  82. Rekha C, Poornima G, Manasa M et al (2012) Ascorbic acid, total phenol content and antioxidant activity of fresh juices of four ripe and unripe citrus fruits. Chem Sci Trans 1(2):303–310CrossRefGoogle Scholar
  83. Ristić S, Ranković B, Kosanić M et al (2016a) Phytochemical study and antioxidant, antimicrobial and anticancer activities of Melanelia subaurifera and Melanelia fuliginosa lichens. J Food Sci Technol 53:2804–2816PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ristić S, Ranković B, Kosanić M et al (2016b) Biopharmaceutical potential of two Ramalina lichens and their metabolites. Curr Pharm Biotechnol 17:651–658PubMedCrossRefGoogle Scholar
  85. Ross Watson R (2014) Polyphenols in plants: isolation, purification and extract preparation. Academic Press, San Diego, CAGoogle Scholar
  86. Russo A, Piovano M, Lombardo L et al (2008) Lichen metabolites prevent UV light and nitric oxide-mediated plasmid DNA damage and induce apoptosis in human melanoma cells. Life Sci 83:468–474PubMedCrossRefGoogle Scholar
  87. Sachindra NM, Airanthi MKWA, Hosokawa M et al (2010) Radical scavenging and singlet oxygen quenching activity of extracts from Indian seaweeds. J Food Sci Technol 47:94–99PubMedPubMedCentralCrossRefGoogle Scholar
  88. Sanchez-Moreno C, Larrauri JA, Saura-Calixto FA (1998) A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric 76:270–276CrossRefGoogle Scholar
  89. Sangameswaran B, Balakrishnan BR, Chumbhale D et al (2009) In vitro antioxidant activity of roots of Thespesia lampas dalz and gips. Pak J Pharm Sci 22:368–372PubMedGoogle Scholar
  90. Sawa T, Nakao M, Akaike T et al (1999) Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: implications for the anti-tumor-promoter effect of vegetables. J Agric Food Chem 47:397–402PubMedCrossRefGoogle Scholar
  91. Selvaraj G, Tinabaye A, Ananthi R (2015) In vitro antioxidant activities of salazinic acid and its derivative hexaacetyl salazinic acid. Int J Adv Res Technol 4:345–355Google Scholar
  92. Sharma BC, Kalikotay S (2012) Screening of antioxidant activity of lichens Parmotrema reticulatum and Usnea sp. from Darjeeling Hills, India. IOSR J Pharm 2:54–60Google Scholar
  93. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178CrossRefGoogle Scholar
  94. Sisodia R, Geol M, Verma S et al (2013) Antibacterial and antioxidant activity of lichen species Ramalina roesleri. Nat Prod Res 27:2235–2239PubMedCrossRefGoogle Scholar
  95. Souri E, Amin G, Farsam H et al (2008) Screening of thirteen medicinal plant extracts for antioxidant activity. Iran J Pharm Res 7:149–154Google Scholar
  96. Squadriato GL, Pelor WA (1998) Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med 25(4–5):392–403CrossRefGoogle Scholar
  97. Stanly C, Ali DMH, Keng CL et al (2011) Comparative evaluation of antioxidant activity and total phenolic content of selected lichen species from Malaysia. J Pharm Res 4:2824–2827Google Scholar
  98. Stepanenko LS, Krivoshchekova OE, Skirina IF (2002) Functions of phenolic secondary metabolites in lichens from Far East Russia. Symbiosis 32:119–131Google Scholar
  99. Thadhani VM, Choudhary MI, Ali S et al (2011) Antioxidant activity of some lichen metabolites. Nat Prod Res 25:1827–1837PubMedCrossRefGoogle Scholar
  100. Tilak JC, Adhikari S, Devasagayam TPA (2004) Antioxidant properties of Plumbago zeylanica, an Indian medicinal plant and its active ingredient, plumbagin. Redox Rep 9:220–227CrossRefGoogle Scholar
  101. Tomović J, Kosanić M, Ristić S et al (2017) Chemical composition and bioactive properties of the lichen, Pleurosticta acetabulum. Trop J Pharm Res 16:2977–2984CrossRefGoogle Scholar
  102. Tougas T, Jannetti J, Collier W (1985) Theoretical and experimental response of a biamperometric detector for flow injection analysis. Anal Chem 57:1377–1381CrossRefGoogle Scholar
  103. Vagi E, Rapavi E, Hadolin M et al (2005) Phenolic and triterpenoid antioxidants from Origanum majorana L. herb and extracts obtained with different solvents. J Agric Food Chem 53:17–21PubMedCrossRefGoogle Scholar
  104. Verma N, Behera BC, Sonone A et al (2008a) Lipid peroxidation and tyrosinase inhibition by lichen symbionts grown in vitro. Afr J Biochem Res 2:225–231Google Scholar
  105. Verma N, Behera BC, Sonone A et al (2008b) Cell aggregates derived from natural lichen thallus fragments: antioxidant activities of lichen metabolites developed in vitro. Nat Prod Commun 3:1911–1918Google Scholar
  106. Verma N, Behera BC, Joshi A (2012) Studies on nutritional requirement for the culture of lichen Ramalina nervulosa and Ramalina pacifica to enhance the production of antioxidant metabolites. Folia Microbiol 57(2):107–114CrossRefGoogle Scholar
  107. Vivek MN, Kambar Y, Manasa M et al (2014) Radical scavenging and antibacterial activity of three Parmotrema species from Western Ghats of Karnataka, India. J Appl Pharm Sci 4:086–091Google Scholar
  108. Yamamoto Y, Miura Y, Higuchi M et al (1993) Using lichen tissue cultures in modern biology. Bryologists 96:384–393CrossRefGoogle Scholar
  109. Yanishlieva NV, Marinova EM, Gordon HM et al (1999) Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem 64:59–66CrossRefGoogle Scholar
  110. Young I, Woodside J (2001) Antioxidants in health and disease. J Clin Pathol 54:176–186PubMedPubMedCentralCrossRefGoogle Scholar
  111. Yucel O, Odabasoglu F, Gulluce M et al (2007) Antioxidant and antimicrobial properties of a lichen species, Cladonia rangiformis growing in Turkey. Turk J Pharm Sci 4:101–109Google Scholar
  112. Zhang XY, Chen da C, Mei Hong Xiu MH et al (2009) The novel oxidative stress marker thioredoxin is increased in first-episode schizophrenic patients. Schizophr Res 113(2–3):151–157PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marijana Kosanić
    • 1
  • Branislav Ranković
    • 1
  1. 1.Department of Biology, Faculty of ScienceUniversity of KragujevacKragujevacSerbia

Personalised recommendations