Advertisement

Breast Disease pp 507-528 | Cite as

Angiogenesis Inhibition in Breast Cancer

  • Kerem Okutur
  • Gokhan Demir
Chapter

Abstract

Angiogenesis plays an essential role in tumor development, invasion, and metastasis. In preclinical models, agents that block the vascular endothelial growth factor (VEGF) pathway have been shown to effectively inhibit tumor angiogenesis and growth. Although antiangiogenic therapies, including anti-VEGF antibodies and tyrosine kinase inhibitors, have become important components of the standard of care for the treatment of many solid tumors, the results of clinical trials investigating the efficacy of antiangiogenic agents in breast cancer are contradictory. In this chapter, the importance of angiogenesis inhibition in breast cancer is discussed in light of recent clinical data.

Keywords

Angiogenesis  Tumor angiogenesis  VEGF  Breast cancer  Angiogenesis inhibition  Antiangiogenic agents  Bevacizumab  Tyrosine kinase inhibitors 

References

  1. 1.
    Lorusso V. Bevacizumab in the treatment of HER2-negative breast cancer. Biologics. 2008;2:813–21.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Bareschino MA, Schettino C, Colantuoni G, Rossi E, Rossi A, Maione P, et al. The role of antiangiogenetic agents in the treatment of breast cancer. Curr Med Chem. 2011;18:5022–32.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Azam F, Mehta S, Harris AL. Mechanisms of resistance to antiangiogenesis therapy. Eur J Cancer. 2010;46:1323–32.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Gardlik R, Celec P, Bernadic M. Targeting angiogenesis for cancer (gene) therapy. Bratisl Lek Listy. 2011;112:428–34.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Tammela T, Enholm B, Alitalo K, Paavonen K. The biology of vascular endothelial growth factors. Cardiovasc Res. 2005;65:550–63.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int. 1999;56:794–814.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Liekens S, De Clercq E, Neyts J. Angiogenesis: regulators and clinical applications. Biochem Pharmacol. 2001;61:253–70.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Koutras AK, Starakis I, Lymperatou D, Kalofonos HP. Angiogenesis as a therapeutic target in breast cancer. Mini Rev Med Chem. 2012;12:1230–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Schneider BP, Miller KD. Angiogenesis of breast cancer. J Clin Oncol. 2005;23:1782–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Roland CL, Dineen SP, Lynn KD, Sullivan LA, Dellinger MT, Sadegh L, et al. Inhibition of vascular endothelial growth factor reduces angiogenesis and modulates immune cell infiltration of orthotopic breast cancer xenografts. Mol Cancer Ther. 2009;8:1761–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Viacava P, Naccarato AG, Bocci G, Fanelli G, Aretini P, Lonobile A, et al. Angiogenesis and VEGF expression in pre-invasive lesions of the human breast. J Pathol. 2004;204:140–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Bluff JE, Menakuru SR, Cross SS, Higham SE, Balasubramanian SP, Brown NJ, et al. Angiogenesis is associated with the onset of hyperplasia in human ductal breast disease. Br J Cancer. 2009;101:666–72.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Schneider BP, Radovich M, Sledge GW, Robarge JD, Li L, Storniolo AM, et al. Association of polymorphisms of angiogenesis genes with breast cancer. Breast Cancer Res Treat. 2008;111:157–63.PubMedCrossRefGoogle Scholar
  15. 15.
    Guinebretière JM, Lê Monique G, Gavoille A, Bahi J, Contesso G. Angiogenesis and risk of breast cancer in women with fibrocystic disease. J Natl Cancer Inst. 1994;86:635–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Guidi AJ, Fischer L, Harris JR, Schnitt SJ. Microvessel density and distribution in ductal carcinoma in situ of the breast. J Natl Cancer Inst. 1994;86:614–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma. N Engl J Med. 1991;324:1–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362:841–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol. 2004;165:35–52.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011;91:1071–121.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wildiers H, Guetens G, De Boeck G, Verbeken E, Landuyt B, Landuyt W, et al. Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11. Br J Cancer. 2003;88:1979–86.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Manzoni M, Rovati B, Ronzoni M, Loupakis F, Mariucci S, Ricci V, et al. Immunological effects of bevacizumab-based treatment in metastatic colorectal cancer. Oncology. 2010;79:187–96.PubMedCrossRefGoogle Scholar
  23. 23.
    Lu J-F, Bruno R, Eppler S, Novotny W, Lum B, Gaudreault J. Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother Pharmacol. 2008;62:779–86.PubMedCrossRefGoogle Scholar
  24. 24.
    Dai F, Shu L, Bian Y, Wang Z, Yang Z, Chu W, Gao S. Safety of bevacizumab in treating metastatic colorectal cancer: a systematic review and meta-analysis of all randomized clinical trials. Clin Drug Investig. 2013;33:779–88.PubMedCrossRefGoogle Scholar
  25. 25.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Giantonio BJ, Catalano PJ, Meropol NJ, O’Dwyer PJ, Mitchell EP, Alberts SR, Eastern Cooperative Oncology Group Study E3200, et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol. 2007;25:1539–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355:2542–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 2003;349:427–34.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, ICON7 Investigators, et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011;365:2484–96.PubMedCrossRefGoogle Scholar
  30. 30.
    Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27:4733–40.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Tewari KS, Sill M, Long HJ, Ramondetta LM, Landrum LM, Oaknin A, et al. Incorporation of bevacizumab in the treatment of recurrent and metastatic cervical cancer: a phase III randomized trial of the Gynecologic Oncology Group. J Clin Oncol. 2013;31(Suppl):abstr 3.CrossRefGoogle Scholar
  32. 32.
    Gordon MS, Margolin K, Talpaz M, Sledge GW Jr, Holmgren E, Benjamin R, et al. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol. 2001;19:843–50.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Margolin K, Gordon MS, Holmgren E, Gaudreault J, Novotny W, Fyfe G, et al. Phase Ib trial of intravenous recombinant humanized monoclonal antibody to vascular endothelial growth factor in combination with chemotherapy in patients with advanced cancer: pharmacologic and long-term safety data. J Clin Oncol. 2001;19:851–6.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Jayson GC, Mulatero C, Ranson M, Zweit J, Jackson A, Broughton L, European Organisation for Research and Treatment of Cancer (EORTC), et al. Phase I investigation of recombinant anti-human vascular endothelial growth factor antibody in patients with advanced cancer. Eur J Cancer. 2005;41:555–63.PubMedCrossRefGoogle Scholar
  35. 35.
    Cobleigh MA, Langmuir VK, Sledge GW, Miller KD, Haney L, Novotny WF, et al. A phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin Oncol. 2003;30(Suppl 16):117–24.PubMedCrossRefGoogle Scholar
  36. 36.
    Sledge G, Miller K, Moisa C, Gradishar W. Safety and efficacy of capecitabine (C) plus bevacizumab (B) as first-line in metastatic breast cancer. J Clin Oncol. 2007;25(Suppl):abstr 1013.Google Scholar
  37. 37.
    Burstein HJ, Chen YH, Parker LM, Savoie J, Younger J, Kuter I, et al. VEGF as a marker for outcome among advanced breast cancer patients receiving anti-VEGF therapy with bevacizumab and vinorelbine chemotherapy. Clin Cancer Res. 2008;14:7871–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Perez EA, Hillman DW, Dentchev T, Le-Lindqwister NA, Geeraerts LH, Fitch TR, et al. North Central Cancer Treatment Group (NCCTG) N0432: phase II trial of docetaxel with capecitabine and bevacizumab as first-line chemotherapy for patients with metastatic breast cancer. Ann Oncol. 2010;21:269–74.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Smith IE, Pierga JY, Biganzoli L, Cortés-Funes H, Thomssen C, Pivot X, ATHENA Study Group, et al. First-line bevacizumab plus taxane-based chemotherapy for locally recurrent or metastatic breast cancer: safety and efficacy in an open-label study in 2,251 patients. Ann Oncol. 2011;22:595–602.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Smith I, Pierga JY, Biganzoli L, Cortes-Funes H, Thomssen C, Saracchini S, et al. Final overall survival results and effect of prolonged (≥1 year) first-line bevacizumab-containing therapy for metastatic breast cancer in the ATHENA trial. Breast Cancer Res Treat. 2011;130:133–43.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Fabi A, Russillo M, Ferretti G, Metro G, Nisticò C, Papaldo P, et al. Maintenance bevacizumab beyond first-line paclitaxel plus bevacizumab in patients with Her2-negative hormone receptor-positive metastatic breast cancer: efficacy in combination with hormonal therapy. BMC Cancer. 2012;12:482.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Bisagni G, Musolino A, Panebianco M, De Matteis A, Nuzzo F, Ardizzoni A, et al. The Breast Avastin Trial: phase II study of bevacizumab maintenance therapy after induction chemotherapy with docetaxel and capecitabine for the first-line treatment of patients with locally recurrent or metastatic breast cancer. Cancer Chemother Pharmacol. 2013;71:1051–7.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Militello L, Carli P, Di Lauro V, Spazzapan S, Scalone S, Lombardi D, et al. Bevacizumab as maintenance therapy (mBev) in metastatic breast cancer (MBC). J Clin Oncol. 2013;31(Suppl):abstr e22149.Google Scholar
  44. 44.
    Gligorov J, Doval D, Bines J, Alba E, Cortes P, Pierga JY, et al. Maintenance capecitabine and bevacizumab versus bevacizumab alone after initial first-line bevacizumab and docetaxel for patients with HER2-negative metastatic breast cancer (IMELDA): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:1351–60.PubMedCrossRefGoogle Scholar
  45. 45.
    Miller KD, Chap LI, Holmes FA, Cobleigh MA, Marcom PK, Fehrenbacher L, et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol. 2005;23:792–9.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357:2666–76.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Miles DW, Chan A, Dirix LY, Cortés J, Pivot X, Tomczak P, et al. Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2010;28:3239–47.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Chang TY, Dong YH, Lin C, Lin HH, Kuo SH, Lai C, et al. Does chemotherapy schedule matter when combining with bevacizumab? A stratified meta-analysis of randomized controlled trials. J Clin Oncol. 2014;32(suppl; abstr 1076):5s.Google Scholar
  49. 49.
    Miles DW, de Haas SL, Dirix LY, Romieu G, Chan A, Pivot X, et al. Biomarker results from the AVADO phase 3 trial of first-line bevacizumab plus docetaxel for HER2-negative metastatic breast cancer. Br J Cancer. 2013;108:1052–60.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Miles D, Cameron D, Bondarenko I, Manzyuk L, Alcedo JC, Lopez RI, et al. Bevacizumab plus paclitaxel versus placebo plus paclitaxel as first-line therapy for HER2-negative metastatic breast cancer (MERiDiAN): a double-blind placebo-controlled randomised phase III trial with prospective biomarker evaluation. Eur J Cancer. 2017;70:146–55.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Robert NJ, Diéras V, Glaspy J, Brufsky AM, Bondarenko I, Lipatov ON, et al. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol. 2011;29:1252–60.PubMedCrossRefGoogle Scholar
  52. 52.
    Brufsky AM, Hurvitz S, Perez E, Swamy R, Valero V, O’Neill V, et al. RIBBON-2: a randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2011;29:4286–93.PubMedCrossRefGoogle Scholar
  53. 53.
    von Minckwitz G, Puglisi F, Cortes J, Vrdoljak E, Marschner N, Zielinski C, et al. Bevacizumab plus chemotherapy versus chemotherapy alone as second-line treatment for patients with HER2-negative locally recurrent or metastatic breast cancer after first-line treatment with bevacizumab plus chemotherapy (TANIA): an open-label, randomised phase 3 trial. Lancet Oncol. 2014;15:1269–78.CrossRefGoogle Scholar
  54. 54.
    Vrdoljak E, Marschner N, Zielinski C, Gligorov J, Cortes J, Puglisi F, et al. Final results of the TANIA randomised phase III trial of bevacizumab after progression on first-line bevacizumab therapy for HER2-negative locally recurrent/metastatic breast cancer. Ann Oncol. 2016;27:2046–52.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Lang I, Brodowicz T, Ryvo L, Kahan Z, Greil R, Beslija S. Central European Cooperative Oncology Group, et al. Bevacizumab plus paclitaxel versus bevacizumab plus capecitabine as first-line treatment for HER2-negative metastatic breast cancer: interim efficacy results of the randomised, open-label, non-inferiority, phase 3 TURANDOT trial. Lancet Oncol. 2013;14:125–33.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Zielinski C, Láng I, Inbar M, Kahán Z, Greil R, Beslija S, et al. Bevacizumab plus paclitaxel versus bevacizumab plus capecitabine as first-line treatment for HER2-negative metastatic breast cancer (TURANDOT): primary endpoint results of a randomised, open-label, non-inferiority, phase 3 trial. Lancet Oncol. 2016;17:1230–9.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Inbar MJ, Lang I, Kahan Z, Greil R, Beslija S, Stemmer SM, et al. Central European Cooperative Oncology Group. Efficacy of first-line bevacizumab (BEV)-based therapy for metastatic triple-negative breast cancer (TNBC): subgroup analysis of TURANDOT. J Clin Oncol. 2013;31(Suppl):abstr 1040.Google Scholar
  58. 58.
    Rochlitz C, von Moos R, Bigler M, Zaman K, Anchisi S, Küng M, et al. SAKK 24/09: safety and tolerability of bevacizumab plus paclitaxel versus bevacizumab plus metronomic cyclophosphamide and capecitabine as first-line therapy in patients with HER2-negative advanced stage breast cancer-A multicenter, randomized phase III trial. J Clin Oncol. 2014;32(Suppl):abstr 518.CrossRefGoogle Scholar
  59. 59.
    Tredan O, Follana P, Moullet I, Cropet C, Trager-Maury S, Dauba J, et al. Arobase: a phase III trial of exemestane (Exe) and bevacizumab (BEV) as maintenance therapy in patients (pts) with metastatic breast cancer (MBC) treated in first line with paclitaxel (P) and BEV-A Gineco study. J Clin Oncol. 2014;32(Suppl):abstr 501.CrossRefGoogle Scholar
  60. 60.
    Trédan O, Follana P, Moullet I, Cropet C, Trager-Maury S, Dauba J, et al. A phase III trial of exemestane plus bevacizumab maintenance therapy in patients with metastatic breast cancer after first-line taxane and bevacizumab: a GINECO group study. Ann Oncol. 2016;27:1020–9.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Yen L, You XL, Al Moustafa AE, Batist G, Hynes NE, Mader S, et al. Heregulin selectively upregulates vascular endothelial growth factor secretion in cancer cells and stimulates angiogenesis. Oncogene. 2000;19:3460–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Bagheri-Yarmand R, Vadlamudi RK, Wang RA, Mendelsohn J, Kumar R. Vascular endothelial growth factor up-regulation via p21-activated kinase-1 signaling regulates heregulin-beta1-mediated angiogenesis. J Biol Chem. 2000;275:39451–7.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol. 2001;21:3995–4004.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kumar R, Yarmand-Bagheri R. The role of HER2 in angiogenesis. Semin Oncol. 2001;28(Suppl 16):27–32.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Montero JC, Rodríguez-Barrueco R, Ocaña A, Díaz-Rodríguez E, Esparís-Ogando A, Pandiella A. Neuregulins and cancer. Clin Cancer Res. 2008;14:3237–41.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Konecny GE, Meng YG, Untch M, Wang HJ, Bauerfeind I, Epstein M, et al. Association between HER-2/neu and vascular endothelial growth factor expression predicts clinical outcome in primary breast cancer patients. Clin Cancer Res. 2004;10:1706–16.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Bhattacharjee RN, Timoshenko AV, Cai J, Lala PK. Relationship between cyclooxygenase-2 and human epidermal growth factor receptor 2 in vascular endothelial growth factor C up-regulation and lymphangiogenesis in human breast cancer. Cancer Sci. 2010;101:2026–32.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Le XF, Mao W, Lu C, Thornton A, Heymach JV, Sood AK, et al. Specific blockade of VEGF and HER2 pathways results in greater growth inhibition of breast cancer xenografts that overexpress HER2. Cell Cycle. 2008;7:3747–58.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Hurvitz S, Pegram M, Lin L, Chan D, Allen H, Dichmann R, et al. Final results of a phase II trial evaluating trastuzumab and bevacizumab as first line treatment of HER2-amplified advanced breast cancer. Cancer Res. 2009;69(24(Suppl)):3.Google Scholar
  70. 70.
    Martín M, Makhson A, Gligorov J, Lichinitser M, Lluch A, Semiglazov V, et al. Phase II study of bevacizumab in combination with trastuzumab and capecitabine as first-line treatment for HER-2-positive locally recurrent or metastatic breast cancer. Oncologist. 2012;17:469–75.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Schwartzberg LS, Badarinath S, Keaton MR, Childs BH. Phase II multicenter study of docetaxel and bevacizumab with or without trastuzumab as first-line treatment for patients with metastatic breast cancer. Clin Breast Cancer. 2014;14:161–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Zhao M, Pan X, Layman R, Lustberg MB, Mrozek E, Macrae ER, et al. A phase II study of bevacizumab in combination with trastuzumab and docetaxel in HER2 positive metastatic breast cancer. Investig New Drugs. 2014;32:1285–94.CrossRefGoogle Scholar
  73. 73.
    Rugo HS, Chien AJ, Franco SX, Stopeck AT, Glencer A, Lahiri S, et al. A phase II study of lapatinib and bevacizumab as treatment for HER2-overexpressing metastatic breast cancer. Breast Cancer Res Treat. 2012;134:13–20.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Falchook GS, Moulder S, Naing A, Wheler JJ, Hong DS, Piha-Paul SA, et al. A phase I trial of combination trastuzumab, lapatinib, and bevacizumab in patients with advanced cancer. Investig New Drugs. 2015;33:177–86.CrossRefGoogle Scholar
  75. 75.
    Gianni L, Romieu GH, Lichinitser M, Serrano SV, Mansutti M, Pivot X, et al. AVEREL: a randomized phase III trial evaluating bevacizumab in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive locally recurrent/metastatic breast cancer. J Clin Oncol. 2013;31:1719–25.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Arteaga CL, Mayer IA, O’Neill AM, Swaby RF, Alpaugh RK, Yang XJ, et al. A randomized phase III double-blinded placebo-controlled trial of first-line chemotherapy and trastuzumab with or without bevacizumab for patients with HER2/neu-overexpressing metastatic breast cancer (HER2+ MBC): a trial of the Eastern Cooperative Oncology Group (E1105). J Clin Oncol. 2012;30(Suppl):abstr 605.Google Scholar
  77. 77.
    Miller KD, O’Neill A, Perez EA, Seidman AD, Sledge GW. A phase II pilot trial incorporating bevacizumab into dose-dense doxorubicin and cyclophosphamide followed by paclitaxel in patients with lymph node positive breast cancer: a trial coordinated by the Eastern Cooperative Oncology Group. Ann Oncol. 2012;23:331–7.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Miller K, O’Neill AM, Dang CT, Northfelt DW, Gradishar WJ, Goldstein LJ, et al. Bevacizumab (Bv) in the adjuvant treatment of HER2-negative breast cancer: final results from Eastern Cooperative Oncology Group E5103. J Clin Oncol. 2014;32(Suppl):abstr 500.CrossRefGoogle Scholar
  79. 79.
    Cameron D, Brown J, Dent R, Jackisch C, Mackey J, Pivot X, et al. Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol. 2013;14:933–42.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Bell R, Brown J, Parmar M, Toi M, Suter T, Steger GG, et al. Final efficacy and updated safety results of the randomized phase III BEATRICE trial evaluating adjuvant bevacizumab-containing therapy in triple-negative early breast cancer. Ann Oncol. 2017;28:754–60.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Slamon DJ, Swain SM, Buyse M, Martin M, Geyer CE, Im Y-H, et al. Primary results from BETH, a phase 3 controlled study of adjuvant chemotherapy and trastuzumab ± bevacizumab in patients with HER2-positive, node-positive or high risk node-negative breast cancer. Cancer Res. 2013;73(24 Suppl):abstr S1-03.Google Scholar
  82. 82.
    Greil R, Moik M, Reitsamer R, Ressler S, Stoll M, Namberger K, et al. Neoadjuvant bevacizumab, docetaxel and capecitabine combination therapy for HER2/neu-negative invasive breast cancer: efficacy and safety in a phase II pilot study. Eur J Surg Oncol. 2009;35:1048–54.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Rastogi P, Buyse ME, Swain SM, Jacobs SA, Robidoux A, Liepman MK, et al. Concurrent bevacizumab with a sequential regimen of doxorubicin and cyclophosphamide followed by docetaxel and capecitabine as neoadjuvant therapy for HER2- locally advanced breast cancer: a phase II trial of the NSABP Foundation Research Group. Clin Breast Cancer. 2011;11:228–34.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Kim HR, Jung KH, Im SA, Im YH, Kang SY, Park KH, et al. Multicentre phase II trial of bevacizumab combined with docetaxel-carboplatin for the neoadjuvant treatment of triple-negative breast cancer (KCSG BR-0905). Ann Oncol. 2013;24:1485–90.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Sánchez-Rovira P, Seguí MA, Llombart A, Aranda E, Antón A, Sánchez A, et al. Bevacizumab plus preoperative chemotherapy in operable HER2 negative breast cancer: biomarkers and pathologic response. Clin Transl Oncol. 2013;15:810–7.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Bear HD, Tang G, Rastogi P, Geyer CE Jr, Robidoux A, Atkins JN, et al. Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N Engl J Med. 2012;366:310–20.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Golshan M, Garber JE, Gelman R, Tung N, Smith BL, Troyan S, et al. Does neoadjuvant bevacizumab increase surgical complications in breast surgery? Ann Surg Oncol. 2011;18:733–7.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Kansal KJ, Dominici LS, Tolaney SM, Isakoff SJ, Smith BL, Jiang W, et al. Neoadjuvant bevacizumab: surgical complications of mastectomy with and without reconstruction. Breast Cancer Res Treat. 2013;141:255–9.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Bear HD, Tang G, Rastogi P, Geyer CE Jr, Liu Q, Robidoux A, et al. Neoadjuvant plus adjuvant bevacizumab in early breast cancer (NSABP B-40 [NRG Oncology]): secondary outcomes of a phase 3, randomised controlled trial. Lancet Oncol. 2015;16:1037–48.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    von Minckwitz G, Eidtmann H, Rezai M, Fasching PA, Tesch H, Eggemann H. German Breast Group, Arbeitsgemeinschaft Gynäkologische Onkologie–Breast Study Groups, et al. Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N Engl J Med. 2012;366:299–309.CrossRefGoogle Scholar
  91. 91.
    von Minckwitz G, Loibl S, Untch M, Eidtmann H, Rezai M, Fasching PA, et al. Survival after neoadjuvant chemotherapy with or without bevacizumab or everolimus for HER2-negative primary breast cancer (GBG 44-GeparQuinto). Ann Oncol. 2014;25:2363–72.CrossRefGoogle Scholar
  92. 92.
    Fasching PA, Loibl S, Hu C, Hart SN, Shimelis H, Moore R, et al. BRCA1/2 Mutations and Bevacizumab in the Neoadjuvant treatment of breast cancer: response and prognosis results in patients with triple-negative breast cancer from the GeparQuintoStudy. J Clin Oncol. 2018;23:JCO2017772285.  https://doi.org/10.1200/JCO.2017.77.2285.CrossRefGoogle Scholar
  93. 93.
    Sikov WM, Berry DA, Perou CM, Singh B, Cirrincione CT, Tolaney SM, et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (alliance). J Clin Oncol. 2015;33:13–21.CrossRefGoogle Scholar
  94. 94.
    Sikov WM, Berry DA, Perou CM, Singh B, Cirrincione CT, Tolaney SM, et al. Event-free and overall survival following neoadjuvant weekly paclitaxel and dose-dense AC +/− carboplatin and/or bevacizumab in triple-negative breast cancer: outcomes from CALGB 40603 (Alliance). Cancer Res. 2016;76(4 Suppl):abstr S2-05.Google Scholar
  95. 95.
    Chen XS, Yuan Y, Garfield DH, Wu JY, Huang O, Shen KW. Both carboplatin and bevacizumab improve pathological complete remission rate in neoadjuvant treatment of triple negative breast cancer: a meta-analysis. PLoS One. 2014;9:e108405.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Earl HM, Hiller L, Blenkinsop C, Grybowicz L, Vallier A, Abraham J, et al. for ARTemis Investigators. ARTemis: a randomised trial of bevacizumab with neoadjuvant chemotherapy (NACT) for patients with HER2-negative early breast cancer-Primary endpoint, pathological complete response (pCR). J Clin Oncol. 2014;32(Suppl):abstr 1014.CrossRefGoogle Scholar
  97. 97.
    Earl HM, Hiller L, Dunn JA, Blenkinsop C, Grybowicz L, Vallier AL, et al. Disease-free and overall survival at 3.5 years for neoadjuvant bevacizumab added to docetaxelfollowed by fluorouracil, epirubicin and cyclophosphamide, for women with HER2 negative early breast cancer: ARTemis Trial. Ann Oncol. 2017;28:1817–24.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Rydén L, Stendahl M, Jonsson H, Emdin S, Bengtsson NO, Landberg G. Tumor-specific VEGF-A and VEGFR2 in postmenopausal breast cancer patients with long-term follow-up. Implication of a link between VEGF pathway and tamoxifen response. Breast Cancer Res Treat. 2005;89:135–43.PubMedCrossRefGoogle Scholar
  99. 99.
    Rydén L, Jirström K, Bendahl PO, Fernö M, Nordenskjöld B, Stål O, et al. Tumor-specific expression of vascular endothelial growth factor receptor 2 but not vascular endothelial growth factor or human epidermal growth factor receptor 2 is associated with impaired response to adjuvant tamoxifen in premenopausal breast cancer. J Clin Oncol. 2005;23:4695–704.PubMedCrossRefGoogle Scholar
  100. 100.
    Forero-Torres A, Saleh MN, Galleshaw JA, Jones CF, Shah JJ, Percent IJ, et al. Pilot trial of preoperative (neoadjuvant) letrozole in combination with bevacizumab in postmenopausal women with newly diagnosed estrogen receptor- or progesterone receptor-positive breast cancer. Clin Breast Cancer. 2010;10:275–80.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Yardley DA, Raefsky E, Castillo R, Lahiry A, Locicero R, Thompson D, et al. Phase II study of neoadjuvant weekly nab-paclitaxel and carboplatin, with bevacizumab and trastuzumab, as treatment for women with locally advanced HER2+ breast cancer. Clin Breast Cancer. 2011;11:297–305.PubMedCrossRefGoogle Scholar
  102. 102.
    Pierga JY, Petit T, Delozier T, Ferrero JM, Campone M, Gligorov J, et al. Neoadjuvant bevacizumab, trastuzumab, and chemotherapy for primary inflammatory HER2-positive breast cancer (BEVERLY-2): an open-label, single-arm phase 2 study. Lancet Oncol. 2012;13:375–84.CrossRefGoogle Scholar
  103. 103.
    Pierga JY, Petit T, Levy C, Ferrero JM, Campone M, Gligorov J, et al. Pathological response and circulating tumor cell count identifies treated HER2+ inflammatory breast cancer patients with excellent prognosis: BEVERLY-2 survival data. Clin Cancer Res. 2015;21(6):1298–304.CrossRefGoogle Scholar
  104. 104.
    Tabouret E, Bertucci F, Pierga JY, Petit T, Levy C, Ferrero JM, et al. MMP2 and MMP9 serum levels are associated with favorable outcome in patients with inflammatory breast cancer treated with bevacizumab-based neoadjuvant chemotherapy in the BEVERLY-2 study. Oncotarget. 2016;7:18531–40.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Fernandez M, Calvo I, Martinez N, Herrero M, Quijano Y, Duran H, et al. Final results of neoadjuvant trial of bevacizumab (B) and trastuzumab (T) in combination with weekly paclitaxel (P) as neoadjuvant treatment in HER2-positive breast cancer: a phase II trial (AVANTHER). Cancer Res. 2012;72(Suppl):abstr P1-14-10.Google Scholar
  106. 106.
    Coudert B, Pierga JY, Mouret-Reynier MA, Kerrou K, Ferrero JM, Petit T, et al. Use of [(18)F]-FDG PET to predict response to neoadjuvant trastuzumab and docetaxel in patients with HER2-positive breast cancer, and addition of bevacizumab to neoadjuvant trastuzumab and docetaxel in [(18)F]-FDG PET-predicted non-responders (AVATAXHER): an open-label, randomised phase 2 trial. Lancet Oncol. 2014;15:1493–502.PubMedCrossRefGoogle Scholar
  107. 107.
    Teng LS, Jin KT, He KF, Zhang J, Wang HH, Cao J. Clinical applications of VEGF-trap (aflibercept) in cancer treatment. J Chin Med Assoc. 2010;73:449–56.PubMedCrossRefGoogle Scholar
  108. 108.
    Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 1997;57:4593–9.PubMedGoogle Scholar
  109. 109.
    Rudge JS, Holash J, Hylton D, Russell M, Jiang S, Leidich R, et al. VEGF Trap complex formation measures production rates of VEGF, providing a biomarker for predicting efficacious angiogenic blockade. Proc Natl Acad Sci U S A. 2007;104:18363–70.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A. 2002;99:11393–8.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Huang J, Frischer JS, Serur A, Kadenhe A, Yokoi A, McCrudden KW, et al. Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. Proc Natl Acad Sci U S A. 2003;100:7785–90.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Tew WP, Gordon M, Murren J, Dupont J, Pezzulli S, Aghajanian C, et al. Phase 1 study of aflibercept administered subcutaneously to patients with advanced solid tumors. Clin Cancer Res. 2010;16:358–66.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Lockhart AC, Rothenberg ML, Dupont J, Cooper W, Chevalier P, Sternas L, et al. Phase I study of intravenous vascular endothelial growth factor trap, aflibercept, in patients with advanced solid tumors. J Clin Oncol. 2010;28:207–14.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Isambert N, Freyer G, Zanetta S, You B, Fumoleau P, Falandry C, et al. Phase I dose-escalation study of intravenous aflibercept in combination with docetaxel in patients with advanced solid tumors. Clin Cancer Res. 2012;18:1743–50.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausová J, Macarulla T, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol. 2012;30:3499–506.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Sideras K, Dueck AC, Hobday TJ, Rowland KM Jr, Allred JB, Northfelt DW, et al. North central cancer treatment group (NCCTG) N0537: phase II trial of VEGF-trap in patients with metastatic breast cancer previously treated with an anthracycline and/or a taxane. Clin Breast Cancer. 2012;12:387–91.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Krupitskaya Y, Wakelee HA. Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Curr Opin Investig Drugs. 2009;10:597–605.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Spratlin J. Ramucirumab (IMC-1121B): monoclonal antibody inhibition of vascular endothelial growth factor receptor-2. Curr Oncol Rep. 2011;13:97–102.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Spratlin JL, Cohen RB, Eadens M, Gore L, Camidge DR, Diab S, et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol. 2010;28:780–7.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Mackey JR, Ramos-Vazquez M, Lipatov O, McCarthy N, Krasnozhon D, Semiglazov V, et al. Primary results of ROSE/TRIO-12, a randomized placebo-controlled phase III trial evaluating the addition of ramucirumab to first-line docetaxel chemotherapy in metastatic breast cancer. J Clin Oncol. 2015;33:141–8.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Patyna S, Laird AD, Mendel DB, O’farrell AM, Liang C, Guan H, et al. SU14813: a novel multiple receptor tyrosine kinase inhibitor with potent antiangiogenic and antitumor activity. Mol Cancer Ther. 2006;5(7):1774–82.PubMedCrossRefGoogle Scholar
  122. 122.
    Chow LQ, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol. 2007;25:884–96.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Murray LJ, Abrams TJ, Long KR, Ngai TJ, Olson LM, Hong W, et al. SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin Exp Metastasis. 2003;20:757–66.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Abrams TJ, Murray LJ, Pesenti E, Holway VW, Colombo T, Lee LB, et al. Preclinical evaluation of the tyrosine kinase inhibitor SU11248 as a single agent and in combination with “standard of care” therapeutic agents for the treatment of breast cancer. Mol Cancer Ther. 2003;2:1011–21.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Faivre S, Delbaldo C, Vera K, Robert C, Lozahic S, Lassau N, et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol. 2006;24:25–35.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Sweeney CJ, Chiorean EG, Verschraegen CF, Lee FC, Jones S, Royce M, et al. A phase I study of sunitinib plus capecitabine in patients with advanced solid tumors. J Clin Oncol. 2010;28:4513–20.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Robert F, Sandler A, Schiller JH, Liu G, Harper K, Verkh L, et al. Sunitinib in combination with docetaxel in patients with advanced solid tumors: a phase I dose-escalation study. Cancer Chemother Pharmacol. 2010;66:669–80.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Burstein HJ, Elias AD, Rugo HS, Cobleigh MA, Wolff AC, Eisenberg PD, et al. Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol. 2008;26:1810–6.PubMedCrossRefGoogle Scholar
  129. 129.
    Kozloff M, Chuang E, Starr A, Gowland PA, Cataruozolo PE, Collier M, et al. An exploratory study of sunitinib plus paclitaxel as first-line treatment for patients with advanced breast cancer. Ann Oncol. 2010;21:1436–41.PubMedCrossRefGoogle Scholar
  130. 130.
    Robert NJ, Saleh MN, Paul D, Generali D, Gressot L, Copur MS, et al. Sunitinib plus paclitaxel versus bevacizumab plus paclitaxel for first-line treatment of patients with advanced breast cancer: a phase III, randomized, open-label trial. Clin Breast Cancer. 2011;11:82–92.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Mayer EL, Dhakil S, Patel T, Sundaram S, Fabian C, Kozloff M, et al. SABRE-B: an evaluation of paclitaxel and bevacizumab with or without sunitinib as first-line treatment of metastatic breast cancer. Ann Oncol. 2010;21:2370–6.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Bergh J, Bondarenko IM, Lichinitser MR, Liljegren A, Greil R, Voytko NL, et al. First-line treatment of advanced breast cancer with sunitinib in combination with docetaxel versus docetaxel alone: results of a prospective, randomized phase III study. J Clin Oncol. 2012;30:921–9.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Cardoso F, Canon JL, Amadori D, Aldrighetti D, Machiels JP, Bouko Y, et al. An exploratory study of sunitinib in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive metastatic breast cancer. Breast. 2012;21:716–23.PubMedCrossRefGoogle Scholar
  134. 134.
    Barrios CH, Liu MC, Lee SC, Vanlemmens L, Ferrero JM, Tabei T, Pivot X, Iwata H, Aogi K, Lugo-Quintana R, Harbeck N, Brickman MJ, Zhang K, Kern KA, Martin M. Phase III randomized trial of sunitinib versus capecitabine in patients with previously treated HER2-negative advanced breast cancer. Breast Cancer Res Treat. 2010;121:121–31.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Crown JP, Diéras V, Staroslawska E, Yardley DA, Bachelot T, Davidson N, et al. Phase III trial of sunitinib in combination with capecitabine versus capecitabine monotherapy for the treatment of patients with pretreated metastatic breast cancer. J Clin Oncol. 2013;31:2870–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Wildiers H, Fontaine C, Vuylsteke P, Martens M, Canon JL, Wynendaele W, et al. Multicenter phase II randomized trial evaluating antiangiogenic therapy with sunitinib as consolidation after objective response to taxane chemotherapy in women with HER2-negative metastatic breast cancer. Breast Cancer Res Treat. 2010;123:463–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Yardley DA, Peacock NW, Peyton J, Shipley DL, Spigel S, Barton J, et al. Neoadjuvant sunitinib administered with weekly paclitaxel/carboplatin in patients with locally advanced triple-negative breast cancer: a Sarah Cannon Research Institute Phase I/II Trial. Cancer Res. 2011;71(24 Suppl):Abstract nr P3-14-29.Google Scholar
  138. 138.
    Ahlgren P, Thirlwell M, O’Regan R, Mormont C, Levesque L, Gaspo R, et al. An open-label study of sunitinib (SU) plus exemestane (E) in the first-line treatment of hormone receptor (HR)-positive metastatic breast cancer (MBC). J Clin Oncol. 2009;27(Suppl):abstr e12019.Google Scholar
  139. 139.
    Pilot/phase II randomised, double blind, placebo controlled multicenter study with biomarker evaluation of neoadjuvant exemestane in combination with sunitinib in post-menopausal women with hormone- sensitive, Her-2 negative primar breast cancer. ClinicalTrials.gov Identifier:NCT00931450.
  140. 140.
    Strumberg D, Richly H, Hilger RA, Schleucher N, Korfee S, Tewes M, et al. Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol. 2005;23:965–72.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Wilhelm S, Chien DS. BAY 43-9006: preclinical data. Curr Pharm Des. 2002;8:2255–7.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Gianpaolo-Ostravage C, Carter C, Hibner B, Bankston D, Natero R, Monahan MC, et al. Anti-tumor efficacy of the orally active raf kinase inhibitor BAY 43-9006 in human tumor xenograft models. Proc Am Assoc Cancer Res. 2001;42:Abstr 4954.Google Scholar
  144. 144.
    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, SHARP Investigators Study Group, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, TARGET Study Group, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356:125–34.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Staehler M, et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol. 2009;27:3312–8.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Moreno-Aspitia A, Morton RF, Hillman DW, Lingle WL, Rowland KM Jr, Wiesenfeld M, et al. Phase II trial of sorafenib in patients with metastatic breast cancer previously exposed to anthracyclines or taxanes: North Central Cancer Treatment Group and Mayo Clinic Trial N0336. J Clin Oncol. 2009;27:11–5.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Bianchi G, Loibl S, Zamagni C, Salvagni S, Raab G, Siena S, et al. Phase II multicenter, uncontrolled trial of sorafenib in patients with metastatic breast cancer. Anti-Cancer Drugs. 2009;20:616–24.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Baselga J, Segalla JG, Roché H, Del Giglio A, Pinczowski H, Ciruelos EM, et al. Sorafenib in combination with capecitabine: an oral regimen for patients with HER2-negative locally advanced or metastatic breast cancer. J Clin Oncol. 2012;30:1484–91.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Baselga J, Zamagni C, Gómez P, Bermejo B, Nagai SE, Melichar B, et al. RESILIENCE: phase III randomized, double-blind trial comparing Sorafenib with Capecitabine versus Placebo with Capecitabine in locally advanced or metastatic HER2-negative breast cancer. Clin Breast Cancer. 2017;17:585–94.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Gradishar WJ, Kaklamani V, Sahoo TP, Lokanatha D, Raina V, Bondarde S, et al. A double-blind, randomised, placebo-controlled, phase 2b study evaluating sorafenib in combination with paclitaxel as a first-line therapy in patients with HER2-negative advanced breast cancer. Eur J Cancer. 2013;49:312–22.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Decker T, Overkamp F, Rösel S, Nusch A, Göhler T, Indorf M, et al. A randomized phase II study of paclitaxel alone versus paclitaxel plus sorafenib in second- and third-line treatment of patients with HER2-negative metastatic breast cancer (PASO). BMC Cancer. 2017;17:499.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Isaacs C, Herbolsheimer P, Liu MC, Wilkinson M, Ottaviano Y, Chung GG, et al. Phase I/II study of sorafenib with anastrozole in patients with hormone receptor positive aromatase inhibitor resistant metastatic breast cancer. Breast Cancer Res Treat. 2011;125:137–43.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Mina LA, Yu M, Johnson C, Burkhardt C, Miller KD, Zon R. A phase II study of combined VEGF inhibitor (bevacizumab+sorafenib) in patients with metastatic breast cancer: Hoosier Oncology Group Study BRE06-109. Investig New Drugs. 2013;31:1307–10.CrossRefGoogle Scholar
  155. 155.
    Chen J, Tian CX, Yu M, Lv Q, Cheng NS, Wang Z, et al. Efficacy and safety profile of combining sorafenib with chemotherapy in patients with HER2-negative advanced breast cancer: a meta-analysis. J Breast Cancer. 2014;17:61–8.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Tan QX, Qin QH, Lian B, Yang WP, Wei CY. Sorafenib-based therapy in HER2-negative advanced breast cancer: results from a retrospective pooled analysis of randomized controlled trials. Exp Ther Med. 2014;7:1420–6.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Ferrario C, Strepponi I, Esfahani K, Charamis H, Langleben A, Scarpi E, et al. Phase I/II trial of Sorafenib in combination with Vinorelbine as first-line chemotherapy for metastatic breast cancer. PLoS One. 2016;11:e0167906.  https://doi.org/10.1371/journal.pone.0167906.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Yardley DA, Dickson N, Drosick D, Earwood C, Inhorn R, Murphy P, et al. Sorafenib Plus Ixabepilone as first-line treatment of metastatic HER2-negative breast cancer: a Sarah Cannon Research Institute phase I/II trial. Clin Breast Cancer. 2016;16:180–7.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Sonpavde G, Hutson TE. Pazopanib: a novel multitargeted tyrosine kinase inhibitor. Curr Oncol Rep. 2007;9:115–9.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Hurwitz HI, Dowlati A, Saini S, Savage S, Suttle AB, Gibson DM, et al. Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res. 2009;15:4220–7.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Taylor SK, Chia S, Dent S, Clemons M, Agulnik M, Grenci P, et al. A phase II study of pazopanib in patients with recurrent or metastatic invasive breast carcinoma: a trial of the Princess Margaret Hospital phase II consortium. Oncologist. 2010;15:810–8.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Tan AR, Johannes H, Rastogi P, Jacobs SA, Robidoux A, Flynn PJ, et al. Weekly paclitaxel and concurrent pazopanib following doxorubicin and cyclophosphamide as neoadjuvant therapy for HER-negative locally advanced breast cancer: NSABP Foundation FB-6, a phase II study. Breast Cancer Res Treat. 2015;149(1):163–9.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    de Jonge MJ, Hamberg P, Verweij J, Savage S, Suttle AB, Hodge J, et al. Phase I and pharmacokinetic study of pazopanib and lapatinib combination therapy in patients with advanced solid tumors. Investig New Drugs. 2013;31:751–9.CrossRefGoogle Scholar
  164. 164.
    Johnston SR, Gómez H, Stemmer SM, Richie M, Durante M, Pandite L, et al. A randomized and open-label trial evaluating the addition of pazopanib to lapatinib as first-line therapy in patients with HER2-positive advanced breast cancer. Breast Cancer Res Treat. 2013;137:755–66.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Cristofanilli M, Johnston SR, Manikhas A, Gomez HL, Gladkov O, Shao Z, et al. A randomized phase II study of lapatinib + pazopanib versus lapatinib in patients with HER2+ inflammatory breast cancer. Breast Cancer Res Treat. 2013;137:471–82.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Rosen LS, Kurzrock R, Mulay M, Van Vugt A, Purdom M, Ng C, et al. Safety, pharmacokinetics, and efficacy of AMG 706, an oral multikinase inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2007;25:2369–76.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Coxon A, Bush T, Saffran D, Kaufman S, Belmontes B, Rex K, et al. Broad antitumor activity in breast cancer xenografts by motesanib, a highly selective, oral inhibitor of vascular endothelial growth factor, platelet-derived growth factor, and kit receptors. Clin Cancer Res. 2009;15:110–8.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    De Boer RH, Kotasek D, White S, Koczwara B, Mainwaring P, Chan A, et al. Phase 1b dose-finding study of motesanib with docetaxel or paclitaxel in patients with metastatic breast cancer. Breast Cancer Res Treat. 2012;135:241–52.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Martin M, Roche H, Pinter T, Crown J, Kennedy MJ, Provencher L. TRIO 010 investigators, et al. Motesanib, or open-label bevacizumab, in combination with paclitaxel, as first-line treatment for HER2-negative locally recurrent or metastatic breast cancer: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Oncol. 2011;12:369–76.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Choueiri TK. Axitinib, a novel anti-angiogenic drug with promising activity in various solid tumors. Curr Opin Investig Drugs. 2008;9:658–71.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Wilmes LJ, Pallavicini MG, Fleming LM, Gibbs J, Wang D, Li KL, et al. AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging. 2007;25:319–27.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Rugo HS, Herbst RS, Liu G, Park JW, Kies MS, Steinfeldt HM, et al. Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J Clin Oncol. 2005;23:5474–83.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Rugo HS, Stopeck AT, Joy AA, Chan S, Verma S, Lluch A, et al. Randomized, placebo-controlled, double-blind, phase II study of axitinib plus docetaxel versus docetaxel plus placebo in patients with metastatic breast cancer. J Clin Oncol. 2011;29:2459–65.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Morabito A, Piccirillo MC, Falasconi F, De Feo G, Del Giudice A, Bryce J, et al. Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions. Oncologist. 2009;14:378–90.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Wedge SR, Ogilvie DJ, Dukes M, Kendrew J, Chester R, Jackson JA, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 2002;62:4645–55.PubMedGoogle Scholar
  176. 176.
    Ciardiello F, Caputo R, Damiano V, Caputo R, Troiani T, Vitagliano D, et al. Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin Cancer Res. 2003;9:1546–56.PubMedGoogle Scholar
  177. 177.
    Holden SN, Eckhardt SG, Basser R, de Boer R, Rischin D, Green M, et al. Clinical evaluation of ZD6474, an orally active inhibitor of VEGF and EGF receptor signaling, in patients with solid, malignant tumors. Ann Oncol. 2005;16:1391–7.PubMedCrossRefGoogle Scholar
  178. 178.
    Miller KD, Trigo JM, Wheeler C, Barge A, Rowbottom J, Sledge G, et al. A multicenter phase II trial of ZD6474, a vascular endothelial growth factor receptor-2 and epidermal growth factor receptor tyrosine kinase inhibitor, in patients with previously treated metastatic breast cancer. Clin Cancer Res. 2005;11:3369–76.PubMedCrossRefGoogle Scholar
  179. 179.
    Boér K, Láng I, Llombart-Cussac A, Andreasson I, Vivanco GL, Sanders N, et al. Vandetanib with docetaxel as second-line treatment for advanced breast cancer: a double-blind, placebo-controlled, randomized Phase II study. Investig New Drugs. 2012;30:681–7.CrossRefGoogle Scholar
  180. 180.
    A randomised, double-blind, parallel- group, multicentre, phase II study to evaluate the safety and pharmacological activity of the combination of vandetanib (100 or 300 MG/ daily or placebo) with fulvestrant (loading dose), in postmenopausal advanced breast cancer patients. ClinicalTrials.gov Identifier: NCT00752986.
  181. 181.
    Clemons MJ, Cochrane B, Pond GR, Califaretti N, Chia SK, Dent RA, et al. Randomised, phase II, placebo-controlled, trial of fulvestrant plus vandetanib in postmenopausal women with bone only or bone predominant, hormone-receptor-positive metastatic breast cancer (MBC): the OCOG ZAMBONEY study. Breast Cancer Res Treat. 2014;146:153–62.PubMedCrossRefGoogle Scholar
  182. 182.
    Jost LM, Gschwind HP, Jalava T, Wang Y, Guenther C, Souppart C, et al. Metabolism and disposition of vatalanib (PTK787/ZK-222584) in cancer patients. Drug Metab Dispos. 2006;34:1817–28.PubMedCrossRefGoogle Scholar
  183. 183.
    Banerjee S, A’Hern R, Detre S, Littlewood-Evans AJ, Evans DB, Dowsett M, et al. Biological evidence for dual antiangiogenic-antiaromatase activity of the VEGFR inhibitor PTK787/ZK222584 in vivo. Clin Cancer Res. 2010;16:4178–87.PubMedCrossRefGoogle Scholar
  184. 184.
    Banerjee S, Zvelebil M, Furet P, Mueller-Vieira U, Evans DB, Dowsett M, et al. The vascular endothelial growth factor receptor inhibitor PTK787/ZK222584 inhibits aromatase. Cancer Res. 2009;69:4716–23.PubMedCrossRefGoogle Scholar
  185. 185.
    Thomas AL, Morgan B, Horsfield MA, Higginson A, Kay A, Lee L, et al. Phase I study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of PTK787/ZK 222584 administered twice daily in patients with advanced cancer. J Clin Oncol. 2005;23:4162–71.PubMedCrossRefGoogle Scholar
  186. 186.
    A phase I/II study of PTK787 in combination with trastuzumab in patients with newly diagnosed HER2 overexpressing locally recurrent or metastatic breast cancer: Hoosier Oncology Group Trial BRE04–80. ClinicalTrials.gov Identifier: NCT00216047.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kerem Okutur
    • 1
  • Gokhan Demir
    • 2
  1. 1.Medical Oncology DepartmentAltinbas University School of MedicineIstanbulTurkey
  2. 2.Medical Oncology DepartmentAcibadem University School of MedicineIstanbulTurkey

Personalised recommendations