Advertisement

Breast Cancer Staging

  • Neslihan Cabioğlu
  • Ekrem Yavuz
  • Adnan Aydiner
Chapter

Abstract

The TNM staging system for breast cancer as described by the American Joint Committee on Cancer (AJCC) was introduced as a standard tool to assess the prognosis of patients with newly diagnosed breast cancer. According to the seventh revised edition of the TNM system in 2009, the presence of isolated tumor cells (ITCs) or micrometastases in axillary lymph nodes has little impact on survival. Furthermore, due to the increasing application of neoadjuvant therapy, additional pretreatment and post-treatment stagings were incorporated into the new staging system to determine chemotherapy response and treatment efficacy. Rapid advances in both clinical and laboratory science along with translational research have raised questions about the feasibility of ongoing TNM staging to determine whether to apply systemic therapy based on anatomic prognosis. Multigene expression assays such as the 70-gene prognostic signature or Oncotype DX tests may provide additional prognostic and predictive information beyond anatomic TNM staging and the estrogen receptor/progesterone receptor (ER/PR) and human epidermal growth factor receptor-2 (HER-2) status. In 2017, the eighth revised edition of the TNM system was published. Clinical and pathological stages (PSs) were incorporated in addition to the traditional anatomic prognostic stage tables. The pathological stage table is based on clinical information, biomarker data including multigene genomic assays, and findings from surgery and resected tissue. It is anticipated that updates will be made on a more frequent basis than the 6- to 8-year cycle of TNM revisions when relevant validated information is available.

Keywords

Staging TNM staging AJCC Prognostic stage Gene expression assays 

References

  1. 1.
    AJCC. In: Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A, editors. Cancer staging handbook. From the AJCC cancer staging manual. 7th ed. New York: Springer; 2010.Google Scholar
  2. 2.
    AJCC: American College of Surgeons. In: Amin et al. editors. AJCC cancer staging manual. 8th ed. Springer Nature; 2017. pp. 588–636.  https://doi.org/10.1007/978-3-319-40618-3_48.Google Scholar
  3. 3.
    Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28:2784–95.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Wolff AC, Hammond ME, Hicks DG, Dowsett M, LM MS, Allison KH, American Society of Clinical Oncology, College of American Pathologists, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31:3997–40133.PubMedCrossRefGoogle Scholar
  5. 5.
    Weiss A, Chavez-MacGregor M, Lichtensztajn DY, Yi M, Tadros A, Hortobagyi GN, et al. Validation Study of the American Joint Committee on Cancer Eighth Edition Prognostic Stage Compared With the Anatomic Stage in Breast Cancer. JAMA Oncol. 2018;4(2):203–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Mittendorf EA, Vila J, Tucker SL, Chavez-MacGregor M, Smith BD, Symmans WF, et al. The neo-bioscore update for staging breast cancer treated with neoadjuvant chemotherapy: incorporation of prognostic biologic factors into staging after treatment. JAMA Oncol. 2016;2(7):929–36.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Giuliano AE, Connolly JL, Edge SB, Mittendorf EA, Rugo HS, Solin LJ, et al. Breast Cancer- Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(4):290–303.PubMedCrossRefGoogle Scholar
  8. 8.
    Chavez-MacGregor M, Mittendorf EA, Clarke CA, Lichtensztajn DY, Hunt KK, Giordano SH. Incorporating Tumor Characteristics to the American Joint Committee on Cancer Breast Cancer Staging System. Oncologist. 2017;22(11):1292–300.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mittendorf EA, Chavez-MacGregor M, Vila J, Yi M, Lichtensztajn DY, Clarke CA, et al. A staging system for breast cancer patients that reflects the prognostic significance of underlying tumor biology. Ann Surg Oncol. 2017;24(12):3502–9.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chen CY, Sun LM, Anderson BO. Paget disease of the breast: changing patterns of incidence, clinical presentation, and treatment in the U.S. Cancer. 2006;107:1448–58.PubMedCrossRefGoogle Scholar
  11. 11.
    Hilton JF, Bouganim N, Dong B, Chapman JW, Arnaout A, O’Malley F, et al. Do alternative methods of measuring tumor size, including consideration of multicentric/multifocal disease, enhance prognostic information beyond TNM staging şn women with early stage breast cancer: an analysis of the NCIC CTG MA.5 and MA. 12 clinical trials. Breast Cancer Res Treat. 2013;142:143–51.PubMedCrossRefGoogle Scholar
  12. 12.
    Walshe JM, Swain SM. Clinical aspects of inflammatory breast cancer. Breast Dis. 2005–2006;22:35–44.PubMedCrossRefGoogle Scholar
  13. 13.
    Huvos AG, Hutter RV, Berg JW. Significance of axillary macrometastases and micrometastases in mammary cancer. Ann Surg. 1971;173:44–6.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Fisher ER, Palekar A, Rockette H, et al. Pathologic findings from the National Surgical Adjuvant Breast Project (Protocol No. 4). V. Significance of axillary nodal micro- and macrometastases. Cancer. 1978;42:2032–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Nasser IA, Lee AK, Bosari S, et al. Occult axillary lymph node metastases in “node-negative” breast carcinoma. Hum Pathol. 1993;24:950–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Singletary SE, Allred C, Ashley P, et al. Revision of the American Joint Committee on Cancer staging system for breast cancer. J Clin Oncol. 2002;20:3628–36.PubMedCrossRefGoogle Scholar
  17. 17.
    Hermanek P, Sobin LH, Wittekind C. How to improve the present TNM staging system. Cancer. 1999;86:2189–91.PubMedCrossRefGoogle Scholar
  18. 18.
    Turner RR, Weaver DL, Cserni G, et al. Nodal stage classification for breast carcinoma: improving interobserver reproducibility through standardized histologic criteria and image-based training. J Clin Oncol. 2008;26:258–63.PubMedCrossRefGoogle Scholar
  19. 19.
    Chen SL, Hoehne FM, Giuliano AE. The prognostic significance of micrometastases in breast cancer: a SEER population-based analysis. Ann Surg Oncol. 2007;14:3378–84.PubMedCrossRefGoogle Scholar
  20. 20.
    Weaver DL, Ashikaga T, Krag DN, Skelly JM, Anderson SJ, Harlow SP, et al. Effect of occult metastases on survival in node-negative breast cancer. N Engl J Med. 2011;364:412–21.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mittendorf EA, Ballman KV, McCall LM, Yi M, Sahin AA, Bedrosian I, et al. Evaluation of the Stage IB Designation of the American Joint Committee on Cancer Staging System in Breast Cancer. J Clin Oncol. 2015;33:1119–27.PubMedCrossRefGoogle Scholar
  22. 22.
    Min CJ, Tafra L, Verbanac KM. Identification of superior markers for polymerase chain reaction detection of breast cancer metastases in sentinel lymph nodes. Cancer Res. 1998;58:4581–4.PubMedGoogle Scholar
  23. 23.
    Blumencranz P, Whitworth PW, Deck K, Rosenberg A, Reintgen D, Beitsch P, et al. Scientific impact recognition award. Sentinel node staging for breast cancer: intraoperative molecular pathology overcomes conventional histologic sampling errors. Am J Surg. 2007;194:426–32.PubMedCrossRefGoogle Scholar
  24. 24.
    Viale G, Dell’Orto P, Biasi MO, Stufano V, De Brito Lima LN, Paganelli G, et al. Comparative evaluation of an extensive histopathologic examination and a real-time reverse-transcription- polymerase chain reaction assay for mammaglobin and cytokeratin 19 on axillary sentinel lymph nodes of breast carcinoma patients. Ann Surg. 2008;247:136–42.PubMedCrossRefGoogle Scholar
  25. 25.
    National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology, Breast Cancer. Version 1. 2019. http://www.nccn.org.
  26. 26.
    Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med. 2005;353(8):793–802.PubMedCrossRefGoogle Scholar
  27. 27.
    Dawood S, Broglio K, Valero V, Reuben J, Handy B, Islam R, et al. Circulating tumor cells in metastatic breast cancer: from prognostic stratification to modification of the staging system? Cancer. 2008;113:2422–30.PubMedCrossRefGoogle Scholar
  28. 28.
    De Giorgi U, Valero V, Rohren E, Dawood S, Ueno NT, Miller MC, et al. Circulating tumor cells and [18F] fluorodeoxyglucose positron emission tomography/computed tomography for outcome prediction in metastatic breast cancer. J Clin Oncol. 2009;27:3303–11.PubMedCrossRefGoogle Scholar
  29. 29.
    Giordano A, Gao H, Anfossi S, Cohen E, Mego M, Lee BN, et al. Epithelial-mesenchymal transition and stem cell markers in patients with HER2-positive metastatic breast cancer. Mol Cancer Ther. 2012;11:2526–34.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Tjensvoll K, Oltedal S, Heikkilä R, Kvaløy JT, Gilje B, Reuben JM, et al. Persistent tumor cells in bone marrow of non-metastatic breast cancer patients after primary surgery are associated with inferior outcome. BMC Cancer. 2012;12:190–201.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hartkopf AD, Taran FA, Wallwiener M, Hahn M, Becker S, Solomayer EF, et al. Prognostic relevance of disseminated tumour cells from the bone marrow of early stage breast cancer patients-results from a large single-centre analysis. Eur J Cancer. 2014;50:2550–9.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Falck AK, Bendahl PO, Inqvar C, Isola J, Jönsson PE, Lindblom P, et al. Analysis of and prognostic information from disseminated tumour cells in bone marrow in primary breast cancer: a prospective observational study. BMC Cancer. 2012;12:403.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Langer I, Guller U, Worni M, Berclaz G, Singer G, Schaer G, et al; Swiss Multicenter Sentinel Lymph Node Study Group in Breast Cancer. Bone marrow micrometastases do not impact disease-free and overall survival in early stage sentinel lymph node negative breast cancer patients. Ann Surg Oncol. 2014;21:401–407.Google Scholar
  34. 34.
    Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25:5287–312.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Apostolaki S, Perraki M, Pallis A, et al. Circulating HER2 mRNA-positive cells in the peripheral blood of patients with stage I and II breast cancer after the administration of adjuvant chemotherapy: evaluation of their clinical relevance. Ann Oncol. 2007;18:851–8.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ignatiadis M, Kallergi G, Ntoulia M, Bozionelou V, Agelaki S, Kanellou P, et al. Prognostic value of the molecular detection of circulating tumor cells using a multimarker reverse transcrip- tion-PCR assay for cytokeratin 19, mammaglobin A, and HER2 in early breast cancer. Clin Cancer Res. 2008;14:2593–600.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ignatiadis M, Xenidis N, Perraki M, Apostolaki S, Politaki E, Kafousi M, et al. Different prognostic value of cytokeratin-19 mRNA positive circulating tumor cells according to estrogen receptor and HER2 status in early-stage breast cancer. J Clin Oncol. 2007;25:5194–202.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Zhanq L, Riethdorf S, Wu G, Wang T, Yang K, Penq G, et al. Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clin Cancer Res. 2012;18:5701–10.CrossRefGoogle Scholar
  39. 39.
    Rack B, Schündbeck C, Jückstock J, Andergassen U, Hepp P, Zwingers T, et al. Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J Natl Cancer Inst. 2014;106Google Scholar
  40. 40.
    Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351:781–91.PubMedCrossRefGoogle Scholar
  41. 41.
    Cristofanilli M, Hayes DF, Budd GT, Ellis MJ, Stopeck A, Reuben JM, et al. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol. 2005;23:1420–30.PubMedCrossRefGoogle Scholar
  42. 42.
    Budd GT, Cristofanilli M, Ellis MJ, Stopeck A, Borden E, Miller MC, et al. Circulating tumor cells versus imaging-predicting overall survival in metastatic breast cancer. Clin Cancer Res. 2006;12:6403–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC, et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res. 2006;12:4218–24.PubMedCrossRefGoogle Scholar
  44. 44.
    Giordano A, Egleston BL, Hajage D, Bland J, Hortobagyi GN, Reuben JM, et al. Establishment and validation of circulating tumor cell-based prognostic nomograms in the first line metastatic breast cancer patients. Clin Cancer Res. 2013;19:1596–602.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol. 1998;16:2672–85.PubMedCrossRefGoogle Scholar
  46. 46.
    Kaufmann M, Hortobagyi GN, Goldhirsch A, Scholl S, Makris A, Valagussa P, et al. Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: an update. J Clin Oncol. 2006;24:1940–9.CrossRefGoogle Scholar
  47. 47.
    Gonzalez-Angulo AM, McGuire SE, Buchholz TA, Tucker SL, Kuerer HM, Rouzier R, et al. Factors predictive of distant metastases in patients with breast cancer who have a pathologic complete response after neoadjuvant chemotherapy. J Clin Oncol. 2005;23:7098–8104.PubMedCrossRefGoogle Scholar
  48. 48.
    Dawood S, Broglio K, Kau SW, Islam R, Symnans WF, Buchholz TA, et al. Prognostic value of initial clinical disease stage after achiewing pathological complete response. Oncologist. 2008;13:6–15.PubMedCrossRefGoogle Scholar
  49. 49.
    Eiermann W, Paepke S, Appfelstaedt J, Llombart-Cussac A, Eremin J, Vinholes J, et al. Preoperative treatment of postmenopausal breast cancer patients with letrozole: a randomized double blind multicenter study. Ann Oncol. 2001;12:1527–32.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cortazar P, Zang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384(9938):164–72.CrossRefGoogle Scholar
  51. 51.
    Kuerer HM, Newman LA, Smith TM, Ames FC, Hunt KK, Dhingra K, et al. Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol. 1999;17:460–9.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A, et al. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol. 2008;26:778–85.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Bear HD, Anderson S, Brown A, et al. The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol. 2003;21:4165–74.PubMedCrossRefGoogle Scholar
  54. 54.
    Green MC, Buzdar AU, Smith T, Smith R, Mamounas EP, Fisher B, et al. Weekly paclitaxel improves pathologic complete remission in operable breast cancer when compared with paclitaxel once every 3 weeks. J Clin Oncol. 2005;23:5983–92.PubMedCrossRefGoogle Scholar
  55. 55.
    Sataloff DM, Mason BA, Prestipino AJ, Seinige UL, Lieber CP, Baloch Z. Pathologic response to induction chemotherapy in locally advanced carcinoma of the breast: a determinant of outcome. J Am Coll Surg. 1995;180:297–306.PubMedGoogle Scholar
  56. 56.
    von Minckwitz G, Rezai M, Loibl S, Fasching PA, Huober J, Tesch H, et al. Capecitabine in addition to anthracycline/taxanebased neoadjuvant treatment in patients with primary breast cancer: the phase III GeparQuattro study. J Clin Oncol. 2010;28:2015–23.CrossRefGoogle Scholar
  57. 57.
    Mazouni C, Peintinger F, Wan-Kau S, Andre F, Gonzalez-Angulo AM, Symmans WF, et al. Residual ductal carcinoma in situ in patients with complete eradication of invasive breast cancer after neoadjuvant chemotherapy does not adversely affect patient outcome. J Clin Oncol. 2007;25:2650–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Jones RL, Lakhani SR, Ring AE, Ashley S, Walsh G, Smith IE. Pathological complete response and residual DCIS following neoadjuvant chemotherapy for breast carcinoma. Br J Cancer. 2006;94:358–62.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 2012;30:1796–804.CrossRefGoogle Scholar
  60. 60.
    Houssami N, Macaskill P, von Minckwitz G, Marinovich ML, Mamounas E. Meta-analysis of the association of breast cancer subtype and pathologic complete response to neoadjuvant chemotherapy. Eur J Cancer. 2012;48:3342–54.PubMedCrossRefGoogle Scholar
  61. 61.
    Buzdar AU, Valero V, Ibrahim NK, Francis D, Broglio KR, Theriault RL, et al. Neoadjuvant therapy with paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide chemotherapy and concurrent trastuzumab in human epidermal growth factor receptor 2-positive operable breast cancer: an update of the initial randomized study population and data of additional patients treated with the same regimen. Clin Cancer Res. 2007;13:228–33.PubMedCrossRefGoogle Scholar
  62. 62.
    Kim MM, Allen P, Gonzalez-Angulo AM, Woodward WA, Meric-Bernstam F, Buzdar AU, et al. Pathologic complete response to neoadjuvant chemotherapy with trastuzumab predicts for improved survival in women with HER2-overexpressing breast cancer. Ann Oncol. 2013;24:1999–2004.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Swain SM, Baselga J, Kim SB, Ro J, Semiglazov V, Campone M, et al; CLEOPATRA Study Group. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 2015;372:724–734.PubMedCrossRefGoogle Scholar
  64. 64.
    Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26:1275–81.PubMedCrossRefGoogle Scholar
  65. 65.
    Denkert C, von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R, et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol. 2015;33:983–91.PubMedCrossRefGoogle Scholar
  66. 66.
    Suman VJ, Hoog J, Lin L, Snider J, Prat A, Parker JS, et al. Randomized Phase II Neoadjuvant Comparison Between Letrozole, Anastrozole, and Exemestane for Postmenopausal Women With Estrogen Receptor–Rich Stage 2 to 3 Breast Cancer: Clinical and Biomarker Outcomes and Predictive Value of the Baseline PAM50-Based Intrinsic Subtype—ACOSOG Z1031. J Clin Oncol. 2011;29:2342–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Leal F, Liutti VT, Antunes Dos Santos VC, Novis de Figueiredo MA, Macedo LT, Rinck Junior JA, Sasse AD. Neoadjuvant endocrine therapy for resectable breast cancer: a systematic review and meta-analysis. Breast. 2015;24(4):406–12.  https://doi.org/10.1016/j.breast.2015.03.004.CrossRefPubMedGoogle Scholar
  68. 68.
    Symmans WF, Peintinger F, Hatzis C, Rajan R, Kuerer H, Valero V, et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol. 2007;25:4414–22.PubMedCrossRefGoogle Scholar
  69. 69.
    Symmans WFi Wei C, Gould R, Yu X, Zhang Y, Liu M, et al. Long-term prognostic risk after neoadjuvant chemotherapy associated with residual cancer burden and breast cancer subtype. J Clin Oncol. 2017;35(10):1049–60.CrossRefGoogle Scholar
  70. 70.
    Chevillard S, Vielh P, Pouillart P. Tumor response of breast cancer patients treated by neaoadjuvant chemotherapy may be predicted by measuring the early level of MDR1 gene expression. Proc Am Soc Clin Oncol. 1993;12:59.Google Scholar
  71. 71.
    Ogston KN, Miller ID, Payne S, Hutcheon AW, Sarkar TK, Smith I, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast. 2003;12:320–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Carey LA, Metzger R, Dees EC, Collichio F, Sartor CI, Ollila DW, et al. American Joint Committee on cancer tumor-node-metastasis stage after neoadjuvant chemotherapy and breast cancer outcome. J Natl Cancer Inst. 2005;97:1137–42.PubMedCrossRefGoogle Scholar
  73. 73.
    Berg WA, Gutierrez L, NessAiver MS, Berg WA, Gutierrez L, NessAiver MS, et al. Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology. 2004;233:830–49.PubMedCrossRefGoogle Scholar
  74. 74.
    Chagpar AB, Middleton LP, Sahin AA, Dempsey P, Buzdar AU, Mirza AN, et al. Accuracy of physical examination, ultrasonography, and mammography in predicting residual pathologic tumor size in patients treated with neoadjuvant chemotherapy. Ann Surg. 2006;243:257–64.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Keam B, Im SA, Lim Y, Han SW, Moon HG, Oh DY, et al. Clinical Usefulness of AJCC Response Criteria for Neoadjuvant Chemotherapy in Breast Cancer. Ann Surg Oncol. 2013;20:2242–24.PubMedCrossRefGoogle Scholar
  76. 76.
    Mittendorf EA, Jeruss JS, Tucker SL, Kolli A, Newman LA, Gonzalez-Angulo AM, et al. Validation of a novel staging system for disease-specific survival in patients with breast cancer treated with neoadjuvant chemotherapy. J Clin Oncol. 2011;29:1956–62.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Mittendorf EA, Vila J, Tucker SL, Chavez-MacGregor M, Smith J, Symmans BD, Sahin AA. The neo-bioscore update for staging breast cancer treated with neoadjuvant chemotherapy: incorporation of prognostic biologic factors into staging after treatment. JAMA Oncol. 2016;2:929–36.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol. 2018;36(20):2105–22.  https://doi.org/10.1200/JCO.2018.77.8738.CrossRefPubMedGoogle Scholar
  79. 79.
    Wolff AC, Hammond ME, Hicks DG. American Society of Clinical Oncology/College of American Pathologists clinical practice guideline upcoming modifications. Proof the clinical practice guidelines are living documents. Arch Pathol Lab Med. 2015;139(8):970–1.CrossRefGoogle Scholar
  80. 80.
    Elston CW, Ellis IO. Pathological prognostic factors in breast cancer I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19:403–10.PubMedCrossRefGoogle Scholar
  81. 81.
    Lester SC, Bose S, Chen YY, Connolly JL, de Baca ME, Fitzgibbons PL, et al. Members of the Cancer Committee, College of American Pathologists. Protocol for the examination of specimens from patients with invasive carcinoma of the breast. Arch Pathol Lab Med. 2009;133(10):1515–38.PubMedGoogle Scholar
  82. 82.
    Lakhani S, Ellis IO, Tan PH, van de Vijver MJ, editors. World health organization classification of tumors, WHO classification of tumors of the breast. 2nd ed. Lyon: IARC; 2012.Google Scholar
  83. 83.
    Pathology Reporting of Breast Disease: A Joint Document Incorporating the Third Edition of the NHS Breast Screening Programme’s Guidelines for Pathology Reporting in Breast Cancer Screening and the Second Edition of The Royal College of Pathologists’ Minimum Dataset for Breast Cancer Histopathology. Sheffield; NHS Cancer Screening Programmes and The Royal College of Pathologists; 2005.Google Scholar
  84. 84.
    Elston CW, Gresham GA, Rao GS, Zebro T, Haybittle JL, Houghton J, et al. The Cancer Research Campaign (Kings/Cambridge) trial for early breast cancer- pathological aspects. Br J Cancer. 1982;45:655–69.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Gerdes J, Schwab U, Lemke H, Stein H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer. 1983;31(1):13–20.PubMedCrossRefGoogle Scholar
  86. 86.
    Network CGA. Comprensive molecular protraits of human breast tumors. Nature. 2012;490(7418):61–70.CrossRefGoogle Scholar
  87. 87.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinoma distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thürlimann B, et al; Panel members. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013;24:2206–2223.Google Scholar
  89. 89.
    Esposito A, Criscitiello C, Curigliano G. Highlights from the 14th St Gallen International Breast Cancer Conference 2015 in Vienna: dealing with classification, prognostication, and prediction refinement to personalize the treatment of patients with early breast cancer. Ecancermedicalscience. 2015;9:518.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Jung HA, Park YH, Kim M, Kim S, Chang WJ, Choi MK, et al. Prognostic relevance of biological subtype overrides that of TNM staging in breast cancer: discordance between stage and biology. Tumour Biol. 2015;36:1073–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Bagaria SP, Ray PS, Sim MS, Ye X, Shamonki JM, Cui X, Giuliano AE. Personalizing breast cancer staging by the inclusion of ER, PR, and HER2. JAMA Surg. 2014;149(2):125–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Orucevic A, Chen J, McLoughlin JM, Heidel RE, Panella T, Bell J. Is the TNM staging system for breast cancer still relevant in the era of biomarkers and emerging personalized medicine for breast cancer - an institution’s 10-year experience. Breast J. 2015;21:147–54.PubMedCrossRefGoogle Scholar
  93. 93.
    Murthy V, Chamberlain RS. Recommendation to revise the AJCC/UICC Breast Cancer Staging System for Inclusion of proven prognostic factors: ER/PR receptor status and HER2 neu. Clin Breast Cancer. 2011;11:346–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Yi M, Mittendorf EA, Cormier JN, Buchholz TA, Bilimoria K, Sahin AA, et al. Novel staging system for predicting disease-specific survival in patients with breast cancer treated with surgery as the first intervention: time to modify the current American Joint Committee on Cancer Staging System. J Clin Oncol. 2011;29:4654–61.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Mittendorf EA, Chavez-Mac Gregor M, Vila J, Yi M, Lichtensztajn DY, Clarke CA, et al. Bioscore: a staging system for breast cancer patients that reflects the prognostic significance of underlying tumor biology. Ann Surg Oncol. 2017;24:3502–9.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Winchester DJ. Personal communication. In: Hortobagyi GN, editor; 2015.Google Scholar
  97. 97.
    Kamuran I, Ozkurt S, Kucucuk S, Yavuz E, Saip P. Comparison of Pathologial Stage and Anatomic Stage Groups According to the Updated Version of the American Joint Committee on Cancer (AJCC) Breast Cancer Staging 8th Edition. Med Sci Monit. 2018;24:3637–43.CrossRefGoogle Scholar
  98. 98.
    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl I Med. 2004;351:2817–26.CrossRefGoogle Scholar
  99. 99.
    Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM et al; TRANSBIG Consortium.Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst. 2006;98:183–92.PubMedCrossRefGoogle Scholar
  100. 100.
    Drukker CA, Bueno-de-Mesquita JM, Retel VP, van Harten WH, van Tinteren H, Wesseling J, et al. A prospective evaluation of a breast cancer prognosis signature in the observational RASTER study. Int J Cancer. 2013;133:929–36.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Tang G, Shak S, Paik S, Anderson SJ, Costantino JP, Geyer CE Jr, et al. Comparison of the Prognostic and Predictive Utilities of the 21-Gene Recurrence Score Assay and Adjuvant! for Women with Node-Negative, ER-Positive Breast Cancer: results from NSABP B-14 and NSABP B-20. Breast Cancer Res Treat. 2011;127:133–42.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Mamounas EP, Tang G, Fisher B, Paik S, Shak S, Costantino JP, et al. Association Between the 21-Gene Recurrence Score Assay and Risk of Locoregional Recurrence in Node-Negative, Estrogen Receptor–Positive Breast Cancer: results from NSABP B-14 and NSABP B-20. J Clin Oncol. 2010;28:1677–83.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Győrffy B, Hatzis C, Sanft T, Hofstatter E, Aktas B, Pusztai L. Multigene prognostic tests in breast cancer: past, present, future. Breast Cancer Res. 2015;17:11.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sparano JA, Gray RJ, Makowe DF, Pritchard KI, Albain KS, Hayes DF, et al. Prospective validation of a 21-Gene expression assay in breast cancer. N Engl J Med. 2015;373:2005–14.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Stemmer SM, Steiner M, Rizel S, Soussan-Gutman L, Ben-Baruch N, Bareket-Samish A, et al. Clinical outcomes in patients with node-negative breast cancer treated based on the recurrence score results: evidence from a large prospectively designed registry. NPJ Breast Cancer. 2017;3:33.  https://doi.org/10.1038/s41523-017-0034-6.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med. 2018;  https://doi.org/10.1056/NEJMoa1804710.PubMedCrossRefGoogle Scholar
  107. 107.
    Cardoso F, van’t Veer LJ, Boguerts J, Slaets L, Viale G, Delaloge S, et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med. 2016;375:717–29.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Krop I, Ismaila N, Andre F, Bast RC, Barlow W, Collyar DE, et al. Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline Focused Update. J Clin Oncol. 2017;35(24):2838–47.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Neslihan Cabioğlu
    • 1
  • Ekrem Yavuz
    • 2
  • Adnan Aydiner
    • 3
  1. 1.Department of General SurgeryIstanbul Faculty of Medicine, University of IstanbulIstanbulTurkey
  2. 2.Department of PathologyIstanbul Faculty of Medicine, University of IstanbulIstanbulTurkey
  3. 3.Oncology Institute, Istanbul Medical FacultyIstanbul UniversityIstanbulTurkey

Personalised recommendations