Advertisement

Breast Disease pp 293-307 | Cite as

Surgical Management of Locally Advanced Breast Cancer

  • Abdullah IgciEmail author
  • Enver Özkurt
Chapter

Abstract

Patients with locally advanced breast cancer (LABC) have historically been considered inoperable cases. However, in light of recent research and studies, even metastatic breast cancers have been downstaged to operable cases using new treatment modalities. The incidence of LABC is less than 5% (Seidman et al. CA Cancer J Clin 37:258–90, 1987; Zeichner et al. Cancerologia 39:1825–30, 1993; Moisa et al. Cancerologia 35:810–4, 1989). Annually, 300,000–450,000 new cases of LABC are diagnosed worldwide. According to the American Joint Committee on Cancer (AJCC) staging system, LABC is classified as follows: T3, large tumors; T4, tumors with skin or chest wall involvement; N2, nodal disease with fixed or matted axillary lymph nodes; and N3, nodal disease with involvement of the ipsilateral subclavicular and supraclavicular lymph nodes (Anonymous et al. AJCC cancer staging handbook, New York: Springer, 255–81, 2002). However, tumors that do not clinically match the criteria for LABC according to the AJCC staging system, such as tumors 3–5 cm in size located in a low-volume breast, behave similarly to LABC; thus, these tumors are optimally treated with combined modality approaches. The administration of preoperative systemic therapy (PST) as the first modality of treatment is favored by most expert groups for the management of stage III and most large stage II breast cancers (Jacquillat et al. Cancer 61:1977–82, 1988; DeLena et al. Cancer Clin Trials 4:229–36, 1981; Cocconi et al. Am J Clin Oncol 13:226–32, 1990; Touboul et al. Radiother Oncol 25:167–75, 1992; Lippman et al. NCI Monogr 1:153–9, 1986; Schwartz et al. Arch Surg 122:1430–4, 1987; Bonadonna et al. J Natl Cancer Inst 82:1539–45, 1990). This treatment may enable downstaging in approximately 70–95% of patients (Jacquillat et al. Cancer 61:1977–82, 1988; Schwartz et al. Arch Surg 122:1430–4, 1987; Bonadonna et al. J Natl Cancer Inst 82:1539–45, 1990; Hortobagyi and BuzdarHigh-risk breast cancer. Berlin: Springer, 382–415, 1991; Hortobagyi et al. Cancer 62:2507–16, 1988). Several studies have compared preoperative systemic therapy with postoperative (adjuvant) systemic therapy and demonstrated that these new treatment modalities prolong disease-free and overall survival (Wolmark et al. J Natl Cancer Inst Monogr 30:96–102, 2001; van der Hage et al. J Clin Oncol 19:4224–37, 2001; Gianni et al. J Clin Oncol 23:7S, 2005). Patients treated with PST were significantly more likely to undergo breast-conserving surgery (BCS) without a significant increase in local recurrence (LR) compared with patients treated with surgery first (Wolmark et al. J Natl Cancer Inst Monogr 30:96–102, 2001; van der Hage et al. J Clin Oncol 19:4224–37, 2001; Gianni et al. J Clin Oncol 23:7S, 2005). In addition, PST results in downstaging the axillary lymph nodes in up to 40% of patients (Wolmark et al. J Natl Cancer Inst Monogr 30:96–102, 2001; van der Hage et al. J Clin Oncol 19:4224–37, 2001; Bear et al. J CIin Oncol 21:4165–74, 2003; Gianni et al. Proc Am Soc Clin Oncol 21:34A, 2002). Downstaging the axilla can reduce morbidity due to decreased rates of axillary dissection. Several randomized and non-randomized studies have demonstrated a significant achievement of pathologic complete response (pCR) in the breast and axillary nodes and improved outcome. According to these studies, clinical and pathological response to PST can be used as an intermediate marker of chemotherapy efficacy, thus prompting the decision as to which chemotherapy regimen should be used following surgery. Furthermore, the efficacy of chemotherapy is slightly enhanced prior to surgery based on robust vascular and lymphatic drainage of the breast and the tumor itself. Based on the findings above, multidisciplinary collective and coordinated work between surgical and oncological teams as well as other clinicians is crucial when evaluating patients with LABC.

Keywords

Locally advanced breast cancer Neoadjuvant chemotherapy Sentinel lymph node biopsy Breast-conserving surgery 

References

  1. 1.
    Seidman H, Gelb SK, Silverberg E, LaVerda N, Lubera JA. Survival experience in the breast cancer detection demonstration project. CA Cancer J Clin. 1987;37:258–90.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Zeichner GI, Mohar BA, Ramirez UMT. Epidemiologia del Cancer de Mama en el Institute Nacional de Cancerologia (1989–1990). Cancerologia. 1993;39:1825–30.Google Scholar
  3. 3.
    Moisa FC, Lopez J, Raymundo C. Epidemiologia del carcinoma del seno mamario en Latino America. Cancerologia. 1989;35:810–4.Google Scholar
  4. 4.
    Anonymous. Part VII. Breast. In: Green FL, Page DL, Fleming ID, et al., editors. AJCC cancer staging handbook. 6th ed. New York: Springer; 2002. p. 255–81.Google Scholar
  5. 5.
    Jacquillat C, Baillet F, Weil M, Auclerc G, Housset M, Auclerc M, et al. Results of a conservative treatment combining induction (neoadjuvant) and consolidation chemotherapy, hormonotherapy, and external and interstitial irradiation in 98 patients with locally advanced breast cancer (IIIA–IIIB). Cancer. 1988;61:1977–82.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    DeLena M, Varini M, Zucali R, Rovini D, Viganotti G, Valagussa P, et al. Multimodal treatment for locally advanced breast cancer: results of chemotherapy-radiotherapy versus chemotherapy -surgery. Cancer Clin Trials. 1981;4:229–36.Google Scholar
  7. 7.
    Cocconi G, di Blasio B, Bisagni G, Alberti G, Botti E, Anghinoni E. Neoadjuvant chemotherapy or chemotherapy and endocrine therapy in locally advanced breast carcinoma. Am J Clin Oncol. 1990;13:226–32.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Touboul E, Lefranc JP, Blondon J, Ozsahin M, Mauban S, Schwartz LH, et al. Multidisciplinary treatment approach to locally advanced non-inflammatory breast cancer using chemotherapy and radiotherapy with or without surgery. Radiother Oncol. 1992;25:167–75.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Lippman ME, Sorace RA, Bagley CS, Danforth DW Jr, Lichter A, Wesley MN. Treatment of locally advanced breast cancer using primary induction chemotherapy with hormonal synchronization followed by radiation therapy with or without debulking surgery. NCI Monogr. 1986;1:153–9.Google Scholar
  10. 10.
    Schwartz GF, Cantor RI, Biermann WA. Neoadjuvant chemotherapy before definitive treatment for stage III carcinoma of the breast. Arch Surg. 1987;122:1430–4.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Bonadonna G, Veronesi U, Brambilla C, Ferrari L, Luini A, Greco M, et al. Primary chemotherapy to avoid mastectomy in tumors with diameters of three centimeters or more. J Natl Cancer Inst. 1990;82:1539–45.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hortobagyi GN, Buzdar AU. Locally advanced breast cancer: a review including the M.D. Anderson experience. In: Ragaz J, Ariel IM, editors. High-risk breast cancer. Berlin: Springer; 1991. p. 382–415.CrossRefGoogle Scholar
  13. 13.
    Hortobagyi GN, Ames FC, Buzdar AU, Kau SW, McNeese MD, Paulus D, et al. Management of stage III primary breast cancer with primary chemotherapy, surgery, and radiation therapy. Cancer. 1988;62:2507–16.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B. Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. J Natl Cancer Inst Monogr. 2001;30:96–102.CrossRefGoogle Scholar
  15. 15.
    van der Hage JA, van de Velde CJ, Julien JP, Tubiana-Hulin M, Vandervelden C, Duchateau L. Preoperative chemotherapy in primary operable breast cancer: results from the European Organization for Research and Treatment of Cancer trial 10902. J Clin Oncol. 2001;19:4224–37.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Gianni L, Baselga J, Eirmann W, Guillem Porta V, Semiglazov V, Lluch A, et al. European cooperative trial in operable breast cancer (ECTO): improved freedom from progression (FFP) from adding paclitaxel (T) to doxorubicin (a) followed by cyclophosphamide methotrexate and fluorouracil (CMF). J Clin Oncol. 2005;23:7S. abst 513.CrossRefGoogle Scholar
  17. 17.
    Bear HD, Anderson S, Brown A, Smith R, Mamounas EP, Fisher B, et al. The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J CIin Oncol. 2003;21:4165–74.CrossRefGoogle Scholar
  18. 18.
    Gianni L, Baselga J, Eiermann W, et al. First report of the European cooperative trial in operable breast cancer (ECTO): effect of primary systemic therapy. Proc Am Soc Clin Oncol. 2002;21:34A. abst 132.Google Scholar
  19. 19.
    Sperber F, Weinstein Y, Sarid D, Ben Yosef R, Shalmon A. Yaal-Hahoshen N. Preoperative clinical, mammographic and sonographic assessment of neoadjuvant chemotherapy response in breast cancer. Isr Med Assoc J. 2006;8:342–6.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Chaiwun B, Settakorn J, Ya-In C, Wisedmongkol W, Rangdaeng S, Thorner P. Effectiveness of fine-needle aspiration cytology of breast: analysis of 2,375 cases from Northern Thailand. Diagn Cytopathol. 2002;26:201–5.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    El-Tamer M, Axiotis C, Kim E, Kim J, Wait R, Homel P, et al. Accurate prediction of the amount of in situ tumor in palpable breast cancers by core needle biopsy: implications for neoadjuvant therapy. Ann Surg Oncol. 1999;6:461–6.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kaneko S, Gerasimova T, Butler WM, Cupples TE, Guerry PL, Greene GR, et al. The use of FISH on breast core needle samples for the presurgical assessment of HER-2 oncogene status. Exp Mol Pathol. 2002;73:61–6.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Taucher S, Rudas M, Gnant M, Thomanek K, Dubsky P, Roka S, et al. Sequential steroid hormone receptor measurements in primary breast cancer with and without intervening primary chemotherapy. Endocr Relat Cancer. 2003;10:91–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Herrada J, Iyer RB, Atkinson EN, Sneige N, Buzdar AU, Hortobagyi GN. Relative value of physical examination, mammography, and breast sonography in evaluating the size of the primary adjuvant tumor and regional lymph node metastases in women receiving neoadjuvant chemotherapy for locally advanced breast carcinoma. Clin Cancer Res. 1997;3:1565–9.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Kuerer HM, Singletary SE, Buzdar AU, Ames FC, Valero V, Buchholz TA, et al. Surgical conservation planning after neoadjuvant chemotherapy for stage II and operable stage III breast carcinoma. Am J Surg. 2001;182:601–8.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Parker KJ, Taylor LS, Gracewski S, Rubens DJ. A unified view of imaging the elastic properties of tissue. J Acoust Soc Am. 2005;117:2705.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Bamber J. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: basic principles and technology. Ultraschall Med. 2013;34:169–84.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Cosgrove D. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: clinical applications. Ultraschall Med. 2013;34:238–53.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, et al. Clinical application of US elastography for diagnosis. Radiology. 2006;239:341–50.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ianculescu V, Ciolovan LM, Dunant A, Vielh P, Mazouni C, Delaloge S, et al. Added value of virtual touch IQ shear wave elastography in the ultrasound assessment of breast lesions. Eur J Radiol. 2014;83(5):773–7.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zaleska-Dorobisz U, Kaczorowski K, Pawluś A, Puchalska A, Inglot M. Ultrasound elastography – review of techniques and its clinical applications. Adv Clin Exp Med. 2014;23(4):645–55.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Zhang X, Xiao Y, Zeng J, Qiu W, Qian M, Wang C, et al. Computer-assisted assessment of ultrasound real-time elastography: initial experience in 145 breast lesions. Eur J Radiol. 2014;83(1):e1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Esserman L, Hylton N, Yassa L, Barclay J, Frankel S, Sickles E. Utility of magnetic resonance imaging in the management of breast cancer: evidence for improved preoperative staging. J Clin Oncol. 1999;17(1):110–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Stoutjesdijk MJ, Boetes C, Jager GJ, Beex L, Bult P, Hendriks JH, et al. Magnetic resonance imaging and mammography in women with a hereditary risk of breast cancer. J Natl Cancer Inst. 2001;93(14):1095–102.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kriege M, Brekelmans CT, Boetes C, Besnard PE, Zonderland HM, Obdeijn IM, et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med. 2004;351:427–37.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Esserman L, Kaplan E, Partridge S, Tripathy D, Rugo H, Park J, et al. MRI phenotype is associated with response to doxorubicin and cyclophosphamide neoadjuvant chemotherapy in stage III breast cancer. Ann Surg Oncol. 2001;8:549–59.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Drew PJ, Kerin MJ, Mahapatra T, Malone C, Monson JR, Turnbull LW, et al. Evaluation of response to neoadjuvant chemoradiotherapy for locally advanced breast cancer with dynamic contrast- enhanced MRI of the breast. Eur J Surg Oncol. 2001;27:617–20.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Balu-Maestro C, Chapellier C, Bleuse A, Chanalet I, Chauvel C, Largillier R. Imaging in evaluation of response to neoadjuvant breast cancer treatment benefits of MRI. Breast Cancer Res Treat. 2002;72:145–52.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Nakamura S, Kenjo H, Nishio T, Kazama T, Doi O, Suzuki K. Efficacy of 3D-MR mammography for 62 breast conserving surgery after neoadjuvant chemotherapy. Breast Cancer. 2002;9:15–9.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Nakamura S, Kenjo H, Nishio T, Kazama T, Do O, Suzuki K. 3D-MR mammography-guided breast conserving surgery after neoadjuvant chemotherapy: clinical results and future perspectives with reference to FDG-PET. Breast Cancer. 2001;8:351–4.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Wasser K, Sinn HP, Fink C, Fink C, Klein SK, Junkermann H, et al. Accuracy of tumor size measurement in breast cancer using MRI is influenced by histological regression induced by neoadjuvant chemotherapy. Eur Radiol. 2003;13:1213–23.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Rosen EL, Blackwell KL, Baker JA, Soo MS, Bentley RC, Yu D, et al. Accuracy of MRI in the detection of residual breast cancer after neoadjuvant chemotherapy. AJR Am J Roentgenol. 2003;181:1275–82.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Cheung YC, Chen SC, Su MY, See LC, Hsueh S, Chang HK, et al. Monitoring the size and response of locally advanced breast cancers to neoadjuvant chemotherapy (weekly paclitaxel and epirubicin) with serial enhanced MRI. Breast Cancer Res Treat. 2003;78:51–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Partridge SC, Gibbs JE, Lu Y, Esserman LJ, Sudilovsky D, Hylton NM. Accuracy of MR imaging for revealing residual breast cancer in patients who have undergone neoadjuvant chemotherapy. AJR Am J Roentgenol. 2002;179:1193–9. 59.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Morris EA. Review of breast MRI: indications and limitations. Semin Roentgenol. 2001;36:226–37.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Marinovich ML, Houssami N, Macaskill P, Sardanelli F, Irwig L, Mamounas EP, et al. Meta-analysis of magnetic resonance imaging in detecting residual breast cancer after neoadjuvant therapy. J Natl Cancer Inst. 2013;105(5):321–33.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Akashi-Tanaka S, Fukutomi T, Sato N, Miyakawa K. The role of computed tomography in the selection of breast cancer treatment. Breast Cancer. 2003;10:198–203.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Akashi-Tanaka S, Fukutomi T, Sato N, Iwamoto E, Watanabe T, Katsumata N, et al. The use of contrast-enhanced computed tomography before neoadjuvant chemotherapy to identify patients likely to be treated safely. Ann Surg. 2004;239(2):238–43.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Danforth DN Jr, Aloj L, Carrasquillo JA, Bacharach SL, Chow C, Zujewski J, et al. The role of 18F-FDG-PET in the local/regional evaluation of women with breast cancer. Breast Cancer Res Treat. 2002;75:135–46.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Burcombe RJ, Makris A, Pittam M, Lowe J, Emmott J, Wong WL. Evaluation of good clinical response to neoadjuvant chemotherapy in primary breast cancer using [18F]-fluorodeoxyglucose positron emission tomography. Eur J Cancer. 2002;38:375–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Schubert EK, Tseng J, et al. Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy. J Nucl Med. 2003;44:1806–14.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Mazouni F, Peintinger S, Wan-Kau S, Andre F, Gonzalez-Angulo AM, Symmans WF, et al. Effect on patient outcome of residual DCIS in patients with complete eradication of invasive breast cancer after neoadjuvant chemotherapy. J Clin Oncol. 2007;25(Suppl 18):530.Google Scholar
  53. 53.
    Mghanga FP, Lan X, Bakari KH, Li C, Zhang Y. Fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography in monitoring the response of breast cancer to neoadjuvant chemotherapy: a meta-analysis. Clin Breast Cancer. 2013;13(4):271–9.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Cheng X, Li Y, Liu B, Xu Z, Bao L, Wang J. 18F-FDG PET/CT and PET for evaluation of pathological response to neoadjuvant chemotherapy in breast cancer: a meta-analysis. Acta Radiol. 2012;53(6):615–27.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Baron LF, Baron PL, Ackerman SJ, Durden DD, Pope TL Jr. Sonographically guided clip placement facilitates localization of breast cancer after neoadjuvant chemotherapy. AJR Am J Roentgenol. 2000;174:539–40.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Alonso-Bartolome P, Ortega Garcia E, Garijo Ayensa F, de Juan Ferre A, Vega Bolivar A. Utility of the tumor bed marker in patients with breast cancer receiving induction chemotherapy. Acta Radiol. 2002;43:29–33.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Nadeem R, Chagla LS, Harris O, Desmond S, Thind R, Flavin A, et al. Tumor localization with a metal coil before the administration of neo-adjuvant chemotherapy. Breast. 2005;14:403–7.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Shen J, Valero V, Buchholz TA, Singletary SE, Ames FC, Ross MI, et al. Effective local control and long-term survival in patients with T4 locally advanced breast cancer treated with breast conservation therapy. Ann Surg Oncol. 2004;11:854–60.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Guth U, Wight E, Schotzau A, Langer I, Dieterich H, Rochlitz C, et al. Breast carcinoma with noninflammatory skin involvement (T4b). Cancer. 2005;104:1862–70.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Drucker MJ, Livingston RB. Monitoring the response of patients with locally advanced breast carcinoma to neoadjuvant chemotherapy using technetium 99m3-sestamibi scintimammography. Cancer. 1999;85:2410–23.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Oruwari JU, Chung MA, Koelliker S, Steinhoff MM, Cady B. Axillary staging using ultrasound-guided fine needle aspiration biopsy in locally advanced breast cancer. Am J Surg. 2002;184:307–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Krishnamurthy S, Sneige N, Bedi DG, Edieken BS, Fornage BD, Kuerer HM, et al. Role of ultrasound-guided fine-needle aspiration of indeterminate and suspicious axillary lymph nodes in the initial staging of breast carcinoma. Cancer. 2002;95:982–8.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Bedrosian I, Reynolds C, Mick R, Callans LS, Grant CS, Donohue JH, et al. Accuracy of sentinel lymph node biopsy in patients with large primary breast tumors. Cancer. 2000;88:2540–5.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Schrenk P, Hochreiner G, Fridrik M, Wayand W. Sentinel node biopsy performed before preoperative chemotherapy for axillary lymph node staging in breast cancer. Breast J. 2003;9:282–7.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Sabel MS, Schott AF, Kleer CG, Merajver S, Cimmino VM, Diehl KM, et al. Sentinel node biopsy prior to neoadjuvant chemotherapy. Am J Surg. 2003;186:102–5.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Ollila DW, Neuman HB, Sartor C, Carey LA, Klauber-Demore N. Lymphatic mapping and sentinel lymphadenectomy prior to neoadjuvant chemotherapy in patients with large breast cancers. Am J Surg. 2005;190:371–5.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Chung MH, Ye W, Giuliano AE. Role for sentinel lymph node dissection in the management of large (> or = 5 cm) invasive breast cancer. Ann Surg Oncol. 2001;8:688–92.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Krag DN, Anderson SJ, Julian TB, Brown AM, Harlow SP, Ashikaga T, et al. Technical outcomes of sentinel-lymph-node resection and conventional axillary-lymph-node dissection in patients with clinically node-negative breast cancer: results from the NSABP -32 randomised phase III trial. Lancet Oncol. 2007;8:881–8.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Veronesi U, Paganelli G, Viale G, Luini A, Zurrida S, Galimberti V, et al. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N Engl J Med. 2003;349:546–53.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Tafra L, Lannin DR, Swanson MS, Van Eyk JJ, Verbanac KM, Chua AN, et al. Multicenter trial of sentinel node biopsy for breast cancer using both technetium sulfur colloid and isosulfan blue dye. Ann Surg. 2001;233:51–9.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    McMasters KM, Tuttle TM, Carlson DJ, Brown CM, Noyes RD, Glaser RL, et al. Sentinel lymph node biopsy for breast cancer: a suitable alternative to routine axillary dissection in multi-institutional practice when optimal technique is used. J Clin Oncol. 2000;18:2560–6.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Boughey JC, Suman VJ, Mittendorf EA, Ahrendt GM, Wilke LG, Taback B, et al. Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: the ACOSOG Z1071 (Alliance) clinical trial. Alliance for Clinical Trials in Oncology. JAMA. 2013;310(14):1455–61.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Mamounas EP. Timing of determining axillary lymph node status when neoadjuvant chemotherapy is used. Curr Oncol Rep. 2014;16(2):364.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Elliott RM, Shenk RR, Thompson CL, Gilmore HL. Touch preparations for the intraoperative evaluation of sentinel lymph nodes after neoadjuvant therapy have high false-negative rates in patients with breast cancer. Arch Pathol Lab Med. 2014;138(6):814–8.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Fontein DB, van de Water W, Mieog JS, Liefers GJ, van de Velde CJ. Timing of the sentinel lymph node biopsy in breast cancer patients receiving neoadjuvant therapy – recommendations for clinical guidance. Eur J Surg Oncol. 2013;39(5):417–24.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Mauriac L, MacGrogan G, Avril A, Durand M, Floquet A, Debled M, et al. Neoadjuvant chemotherapy for operable breast carcinoma larger than 3 cm: a unicentre randomized trial with a 124 – month median follow-up. Institut Bergonie Bordeaux Groupe Sein (IBBGS). Ann Oncol. 1999;10:47–52.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Bonadonna G, Valagussa P, Brambilla C, Ferrari L, Moliterni A, Terenziani M, et al. Primary chemotherapy in operable breast cancer: eight-year experience at the Milan Cancer Institute. J Clin Oncol. 1998;16:93–100.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Vlastos G, Mirza NQ, Lenert JT, Hunt KK, Ames FC, Feig BW, et al. The feasibility of minimally invasive surgery for stage IIA, IIB, and IIIA breast carcinoma patients after tumor downstaging with induction chemotherapy. Cancer. 2000;88:1417–24.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Fisher B, Brown A, Mamounas E, Wieand S, Robidoux A, Margolese RG, et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-18. J Clin Oncol. 1997;15:2483–93.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Powles TJ, Hickish TF, Makris A, Ashley SE, O’Brien ME, Tidy VA, et al. Randomized trial of chemoendocrine therapy started before or after surgery for treatment of primary breast cancer. J Clin Oncol. 1995;13:547–52.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Bazzocchi M, Facecchia I, Luiani C, Puglisi F, Di Loreto C, Smania S. Diagnostic imaging of lobular carcinoma of the breast: mammographic, ultrasonographic and MR findings. Radiol Med. 2000;100:436–43.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Lesser ML, Rosen PP, Kinne DW. Multicentricity and bilaterality in invasive breast carcinoma. Surgery. 1982;91:234–40.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Sinn HP, Schmid H, Junkermann H, Huober J, Leppien G, Kaufmann M, et al. Histologic regression of breast cancer after primary (neoadjuvant) chemotherapy. Geburtshilfe Frauenheilkd. 1994;54:552–8.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Cocquyt VF, Blondeel PN, Depypere HT, Praet MM, Schelfhout VR, Silva OE, et al. Different responses to preoperative chemotherapy for invasive lobular and invasive ductal breast carcinoma. Eur J Surg Oncol. 2003;29:361–7.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Cristofanilli M, Gonzalez-Angulo A, Sneige N, Kau SW, Broglio K, Theriault RL, et al. Invasive lobular carcinoma classic type: response to primary chemotherapy and survival outcomes. J Clin Oncol. 2005;23:41–8.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Julian TB, Anderson S, Fourchotte V, Haile SR, Fisher ER, Mamounas EP, et al. Is invasive lobular breast cancer a prognostic factor for neoadjuvant chemotherapy response and long term outcomes? Breast Cancer Res Treat. 2006;100:S146. abst 3065.Google Scholar
  87. 87.
    Newman LA, Buzdar AU, Singletary SE, Kuerer HM, Buchholz T, Ames FC, et al. A prospective trial of preoperative chemotherapy in resectable breast cancer: predictors of breast-conservation therapy feasibility. Ann Surg Oncol. 2002;9:228–34.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Chen AM, Meric-Bemstam F, Hunt KK, Chen AM, Meric-Bemstam F, Hunt KK, et al. Breast conservation after neoadjuvant chemotherapy. Cancer. 2005;103:4689–95.Google Scholar
  89. 89.
    Mieog JS, van der Hage JA, van de Velde CJ. Preoperative chemotherapy for women with operable breast cancer. Cochrane Database Syst Rev. 2007;94(10):1189–200.Google Scholar
  90. 90.
    Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans E, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomized trials. Lancet. 2005;366(9503):2087–106.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Kuerer HM, Hunt KK, Newman LA, Ross MI, Ames FC, Singletary SE. Neoadjuvant chemotherapy in women with invasive breast carcinoma: conceptual basis and fundamental surgical issues. J Am Coll Surg. 2002;190:350–63.CrossRefGoogle Scholar
  92. 92.
    Kümmel S, Holtschmidt J, Loibl S. Surgical treatment of primary breast cancer in the neoadjuvant setting. Br J Surg. 2014;101(8):912–24.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Mamounas EP, Anderson SJ, Dignam JJ, Bear HD, Julian TB, Geyer CE Jr, et al. Predictors of locoregional recurrence after neoadjuvant chemotherapy: results from combined analysis of National Surgical Adjuvant Breast and Bowel Project B-18 and B-27. J Clin Oncol. 2012;30:3960–6.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Styblo TM, Lewis MM, Carlson GW, Murray DR, Wood WC, Lawson D, et al. Immediate breast reconstruction for stage III breast cancer using transverse rectus abdominis musculocutaneous (TRAM) flap. Ann Surg Oncol. 1996;3:375–80.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Deutsch MF, Smith M, Wang B, Ainsle N, Schusterman MA. Immediate breast reconstruction with the TRAM flap after neoadjuvant therapy. Ann Plast Surg. 1999;42:240–4.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Newman LA, Kuerer HM, Hunt KK, Ames FC, Ross MI, Theriault R, et al. Feasibility of immediate breast reconstruction for locally advanced breast cancer. Ann Surg Oncol. 1999;6:671–5.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Sultan MR, Smith ML, Estahrook A, Schnabel F, Singh D. Immediate breast reconstruction in patients with locally advanced disease. Ann Plast Surg. 1997;38:345–51.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Hunt KK, Baldwin BJ, Strom EA, Ames FC, McNeese MD, Kroll SS, et al. Feasibility of postmastectomy radiation therapy after TRAM flap breast reconstruction. Ann Surg Oncol. 1997;4:377–84.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Slavin SA, Love SM, Goldwyn RM. Recurrent breast cancer following immediate reconstruction with myocutaneous flaps. Plast Reconstr Surg. 1994;93:1191–207.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Motwani SB, Strom EA, Schechter NR, Butler CE, Lee GK, Langstein HN, et al. The impact of immediate breast reconstruction on the technical delivery of postmastectomy radiotherapy. Int J Radiat Oncol Biol Phys. 2006;66:76–82.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    McKeown DJ, Hogg FJ, Brown IM, Walker MJ, Scott JR, Weiler-Mithoff EM. The timing of autologous latissimus dorsi breast reconstruction and effect of radiotherapy on outcome. J Plast Reconstr Aesthet Surg. 2009;62(4):488–93.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Kronowitz SJ. Immediate versus delayed reconstruction. Clin Plast Surg. 2007;34:39–50. abst 6.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Decker MR, Greenblatt DY, Havlena J, Wilke LG, Greenberg CC, Neuman HB. Impact of neoadjuvant chemotherapy on wound complications after breast surgery. Surgery. 2012;152:382–8.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Garvey EM, Gray RJ, Wasif N, Casey WJ, Rebecca AM, Kreymerman P, et al. Neoadjuvant therapy and breast cancer surgery: a closer look at postoperative complications. Am J Surg. 2013;206:894–8.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Schaverien MV, Munnoch DA. Effect of neoadjuvant chemotherapy on outcomes of immediate free autologous breast reconstruction. Eur J Surg Oncol. 2013;39:430–6.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Warren Peled A, Itakura K, Foster RD, Hamolsky D, Tanaka J, Ewing C, et al. Impact of chemotherapy on postoperative complications after mastectomy and immediate breast reconstruction. Arch Surg. 2010;145:880–5.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Zweifel-Schlatter M, Darhouse N, Roblin P, Ross D, Zweifel M, Farhadi J. Immediate microvascular breast reconstruction after neoadjuvant chemotherapy: complication rates and effect on start of adjuvant treatment. Ann Surg Oncol. 2010;17:2945–50.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Newman EA, Sabel MS, Nees AV, Schott A, Diehl KM, Cimmino VM, et al. Sentinel lymph node biopsy performed after neoadjuvant chemotherapy is accurate in patients with documented node positive breast cancer at presentation. Ann Surg Oncol. 2007;14(10):2946–52.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Lee S, Kim EY, Kang SH, Kim SW, Kim SK, Kang KW, et al. Sentinel node identification rate, but not accuracy, is significantly decreased after pre-operative chemotherapy in axillary node-positive breast cancer patients. Breast Cancer Res Treat. 2007;102:283–8.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Shen J, Gilcrease MZ, Babiera GV, Ross MI, Meric-Bernstam F, Feig BW, et al. Feasibility and accuracy of sentinel lymph node biopsy after preoperative chemotherapy in breast cancer patients with documented axillary metastases. Cancer. 2007;109:1255–63.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Tanaka Y, Maeda H, Ogawa Y, Nishioka A, Itoh S, Kubota K, et al. Sentinel node biopsy in breast cancer patients treated with neoadjuvant chemotherapy. Oncol Rep. 2006;15:927–31.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Yu JC, Hsu GC, Hsieh CB, Yu CP, Chao TY. Role of sentinel lymphadenectomy combined with intraoperative ultrasound in the assessment of locally advanced breast cancer after neoadjuvant chemotherapy. Ann Surg Oncol. 2007;14:174–80.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Kinoshita T. Sentinel lymph node biopsy is feasible for breast cancer patients after neoadjuvant chemotherapy. Breast Cancer. 2007;14:10–5.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Xing Y, Foy M, Cox DD, Kuerer HM, Hunt KK, Cormier JN. Meta-analysis of sentinel lymph node biopsy after preoperative chemotherapy in patients with breast cancer. Br J Surg. 2006;93:539–46.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Mamounas EP. Sentinel lymph node biopsy after neoadjuvant systemic therapy. Surg Clin North Am. 2003;83:931–42.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Mamounas EP, Brown A, Anderson S, Smith R, Julian T, Miller B, et al. Sentinel node biopsy after neoadjuvant chemotherapy in breast cancer: results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol. 2005;23:2694–702.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Tafra L, Verbanac KM, Lannin DR. Preoperative chemotherapy and sentinel lymphadenectomy for breast cancer. Am J Surg. 2001;182:312–5.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Krag D, Weaver D, Ashikaga T, Moffat F, Klimberg VS, Shriver C, et al. The sentinel node in breast cancer: a multicenter validation study. N Engl J Med. 1998;339:941–6.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Kuerer HM, Newman LA, Buzdar AU, Dhingra K, Hunt KK, Buchholz TA, et al. Pathologic tumor response in the breast following neoadjuvant chemotherapy predicts axillary lymph node status. Cancer J Sci Am. 1998;4:230–6.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Kuehn T, Bauerfeind I, Fehm T, Fleige B, Hausschild M, Helms G, et al. Sentinel lymph node biopsy before or after neoadjuvant chemotherapy – final results from the prospective German, multi-institutional SENTINA-Trial. Cancer Res. 2012;72(24 Suppl):95S. Abstract S2-2.Google Scholar
  121. 121.
    Boughey JC, Suman VJ, Mittendorf EA, Ahrendt GM, Wilke LG, Taback B, et al. The role of sentinel lymph node surgery in patients presenting with node positive breast cancer (T0-T4, N1-2) who receive neoadjuvant chemotherapy – results from the ACOSOG Z1071 trial. Cancer Res. 2012;72(24 Suppl):94S. Abstract S2-1.Google Scholar
  122. 122.
    Kuehn T, Bauerfeind I, Fehm T, Fleige B, Hausschild M, Helms G, et al. Sentinel lymph node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy (SENTINA): a prospective, multicentre cohort study. Lancet Oncol. 2013;14:609–18.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Boughey JC, Suman VJ, Mittendorf EA, Ahrendt GM, Wilke LG, Taback B, et al. Factors affecting sentinel lymph node identification rate after neoadjuvant chemotherapy for breast cancer patients enrolled in ACOSOG Z1071 (Alliance). Ann Surg. 2015;261(3):547–52.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Boileau JF, Poirier B, Basik M, Holloway CM, Gaboury L, Sideris L, et al. Sentinel node biopsy after neoadjuvant chemotherapy in biopsy-proven node-positive breast cancer: the SN FNAC study. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(3):258–64.CrossRefGoogle Scholar
  125. 125.
    Jain P, Kumar R, Anand M, Asthana S, Deo SV, Gupta R, et al. Touch imprint cytology of axillary lymph nodes after neoadjuvant chemotherapy in patients with breast carcinoma. Cancer. 2003;99:346–51.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Istanbul Medical FacultyIstanbul UniversityIstanbulTurkey
  2. 2.Department of General SurgeryIstanbul Medical Faculty, Istanbul UniversityIstanbulTurkey

Personalised recommendations