Advertisement

Briefly Summarizing Our Understanding of Vibrio cholerae and the Disease Cholera

  • Christon J. Hurst
Chapter
Part of the Advances in Environmental Microbiology book series (AEM, volume 7)

Abstract

Vibrio cholerae is a naturally existing aquatic bacteria that lives in association with the chitinous exoskeletons of crustaceans including copepods. Cholera is an infectious disease of humans which is caused by ingesting those strains of the bacteria Vibrio cholerae that carry both of two disease related factors, a toxin gene coded by the bacteriophage CTXΦ which produces the cholera toxin, and the toxin-coregulated pilus which both facilitates attachment of the bacteria to host cells and also serves as the CTXΦ receptor. Cholera is considered a waterborne infection, with the primary route of infection being ingestion of fecally contaminated water and secondary transmission being caused by ingesting fecally contaminated food. Development of mathematical modeling frameworks may help to provide an essential lead time for strengthening intervention efforts to either prevent or ameliorate outbreaks of cholera in regions where the disease is endemic.

Keywords

Cholera Vibrio disease Vibrio cholerae 

Notes

Compliance with Ethical Standards

Conflict of Interest

Christon J. Hurst declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals.

References

  1. Ali M, Nelson AR, Lopez AL et al (2015) Updated global burden of cholera in endemic countries. PLoS Negl Trop Dis 9(6):e0003832.  https://doi.org/10.1371/journal.pntd.0003832 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Almagro-Moreno S, Taylor RK (2013) Cholera: environmental reservoirs and impact on disease transmission. Microbiol Spectr 1(2).  https://doi.org/10.1128/microbiolspec.OH-0003-2012
  3. Azman AS, Rudolph KE, Cummings DA et al (2013) The incubation period of cholera: a systematic review. J Inf Secur 66(5):432–438.  https://doi.org/10.1016/j.jinf.2012.11.013 CrossRefGoogle Scholar
  4. Camacho A, Bouhenia M, Alyusfi R et al (2018) Cholera epidemic in Yemen, 2016–18: an analysis of surveillance data. Lancet Glob Health 6(6):e680–e690.  https://doi.org/10.1016/S2214-109X(18)30230-4 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Centers for Disease Control and Prevention (2012) Progress toward global eradication of Dracunculiasis ‐ January 2011–June 2012. Morb Mortal Wkly Rep 61(42):854–857Google Scholar
  6. Chao DL, Longini IM Jr, Morris JG Jr (2014) Modeling cholera outbreaks. Curr Top Microbiol Immunol 379:195–209.  https://doi.org/10.1007/82_2013_307 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cirillo VJ (2016) “I am the baby killer!” house flies and the spread of polio. Am Entomol 62(2):83–85.  https://doi.org/10.1093/ae/tmw039 CrossRefGoogle Scholar
  8. Crawford FG, Vermund SH (1988) Human cryptosporidiosis. Crit Rev Microbiol 16:113–159CrossRefGoogle Scholar
  9. de Magny GC, Mozumder PK, Grim CJ et al (2011) Role of zooplankton diversity in Vibrio cholerae population dynamics and in the incidence of cholera in the Bangladesh Sundarbans. Appl Environ Microbiol 77:6125–6132CrossRefGoogle Scholar
  10. de Magnya GC, Murtugudde R, Sapiano MRP et al (2008) Environmental signatures associated with cholera epidemics. Proc Natl Acad Sci USA 105:17676–17681CrossRefGoogle Scholar
  11. Faruque SM, Mekalanos JJ (2012) Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 3(7):556–565.  https://doi.org/10.4161/viru.22351 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Finelli L, Swerdlow D, Mertz K et al (1992) Outbreak of cholera associated with crab brought from an area with epidemic disease. J Infect Dis 166:1433–1435.  https://doi.org/10.1093/infdis/166.6.1433 CrossRefPubMedGoogle Scholar
  13. Fu S, Shen J, Liu Y et al (2012) A predictive model of Vibrio cholerae for combined temperature and organic nutrient in aquatic environments. J Appl Microbiol 114(2):574–585.  https://doi.org/10.1111/jam.12058 CrossRefPubMedGoogle Scholar
  14. Global Task Force on Cholera Control (2017) A global roadmap to 2030. World Health Organization, Geneva. https://www.who.int/cholera/publications/global-roadmap.pdf. Accessed 7 Dec 2018
  15. Graczyk TK, Knight R, Gilman RH et al (2001) The role of non-biting flies in the epidemiology of human infectious diseases. Microbes Infect 3(3):231–235CrossRefGoogle Scholar
  16. Grimes DJ (1991) Ecology of estuarine bacteria capable of causing human disease: a review. Estuaries 14(4):345–360CrossRefGoogle Scholar
  17. Harris JB, LaRocque RC, Chowdhury F et al (2008) Susceptibility to vibrio cholerae infection in a cohort of household contacts of patients with cholera in Bangladesh. PLoS Negl Trop Dis 2(4):e221.  https://doi.org/10.1371/journal.pntd.0000221] CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hayes CA, Dalia TN, Dalia AB (2017) Systematic genetic dissection of chitin degradation and uptake in Vibrio cholerae. Environ Microbiol 19(10):4154–4163.  https://doi.org/10.1111/1462-2920.13866 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Huq A, Small EB, West PA et al (1983) Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45:275–283PubMedPubMedCentralGoogle Scholar
  20. Huq A, West PA, Small EB et al (1984) Influence of water temperature, salinity, and ph on survival and growth of toxigenic Vibrio cholerae serovar 01 associated with live copepods in laboratory microcosms. Appl Environ Microbiol 48:420–424PubMedPubMedCentralGoogle Scholar
  21. Huq A, Sack RB, Nizam A et al (2005) Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh. Appl Environ Microbiol 71:4645–4654CrossRefGoogle Scholar
  22. Hurst CJ (2018) Understanding and estimating the risk of waterborne infectious disease associated with drinking water. In: Hurst CJ (ed) The connections between ecology and infectious disease, Advances in environmental microbiology, vol 5. Springer, Cham, pp 59–114.  https://doi.org/10.1007/978-3-319-92373-4_3 CrossRefGoogle Scholar
  23. Junqueira ACM, Ratan A, Acerbi E et al (2017) The microbiomes of blowflies and houseflies as bacterial transmission reservoirs. Sci Rep 7:16324.  https://doi.org/10.1038/s41598-017-16353-x CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jutla A, Akanda AS, Huq A et al (2013) A water marker monitored by satellites to predict seasonal endemic cholera. Remote Sens Lett 4(8):822–831.  https://doi.org/10.1080/2150704X.2013.802097 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kiiru J, Mutreja A, Mohamed AA et al (2013) A study on the geophylogeny of clinical and environmental Vibrio cholerae in Kenya. PLoS One 8(9):e74829.  https://doi.org/10.1371/journal.pone.0074829 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Krebs SJ, Taylor RK (2011) Protection and attachment of Vibrio cholerae mediated by the toxin-coregulated pilus in the infant mouse model. J Bacteriol 193:5260–5270.  https://doi.org/10.1128/JB.00378-11 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Leiper RT (1936) Crustacea as helminth intermediaries. Proc R Soc Med 29(9):1073–1074PubMedPubMedCentralGoogle Scholar
  28. Letchumanan V, Chan K-G, Lee L-H (2014) Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front Microbiol 5:705.  https://doi.org/10.3389/fmicb.2014.00705 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lippi D, Gotuzzo E (2014) The greatest steps towards the discovery of Vibrio cholerae. Clin Microbiol Infect 20(3):191–195.  https://doi.org/10.1111/1469-0691.12390 CrossRefPubMedGoogle Scholar
  30. McMillan S, Verner-Jeffreys D, Weeks J et al (2015) Larva of the greater wax moth, Galleria mellonella, is a suitable alternative host for studying virulence of fish pathogenic Vibrio anguillarum. BMC Microbiol 15:127.  https://doi.org/10.1186/s12866-015-0466-9 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mondal M, Nag D, Koley H et al (2014) The Vibrio cholerae extracellular chitinase ChiA2 is important for survival and pathogenesis in the host intestine. PLoS One 9(9):e103119.  https://doi.org/10.1371/journal.pone.0103119 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mooney JP, Butler BP, Lokken KL et al (2014) The mucosal inflammatory response to non-typhoidal Salmonella in the intestine is blunted by IL-10 during concurrent malaria parasite infection. Mucosal Immunol 7(6):1302–1311.  https://doi.org/10.1038/mi.2014.18 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Moravec F, Vidal-Martínez V, Aguirre-Macedo L (1999) Branchiurids (Argulus) as intermediate hosts of the daniconematid nematode Mexiconema cichlasomae. Folia Parasitol 46:79Google Scholar
  34. Nalin DR (1976) Cholera, copepods, and chitinase. Lancet 2(7992):958CrossRefGoogle Scholar
  35. Nalin DR, Levine RJ, Levine MM et al (1978) Cholera, non-vibrio cholera, and stomach acid. Lancet 2(8095):856–859CrossRefGoogle Scholar
  36. Nishiura H, Tsuzuki S, Yuan B et al (2017) Transmission dynamics of cholera in Yemen, 2017: a real time forecasting. Theor Biol Med Model 14:14.  https://doi.org/10.1186/s12976-017-0061-x CrossRefPubMedPubMedCentralGoogle Scholar
  37. Overstreet RM, Jovonovich J, Ma H (2009) Parasitic crustaceans as vectors of viruses, with an emphasis on three penaeid viruses. Integr Comp Biol 49(2):127–141.  https://doi.org/10.1093/icb/icp033 CrossRefPubMedGoogle Scholar
  38. Park J, Lee CS (2018) Vibrio vulnificus infection. N Engl J Med 379(4):375.  https://doi.org/10.1056/NEJMicm1716464 CrossRefPubMedGoogle Scholar
  39. Rabbani GH, Greenough WB III (1999) Food as a vehicle of transmission of cholera. J Diarrhoeal Dis Res 17(1):1–9PubMedGoogle Scholar
  40. Raszl SM, Froelich BA, Vieira CRW et al (2016) Vibrio parahaemolyticus and Vibrio vulnificus in South America: water, seafood and human infections. J Appl Microbiol 121:1201–1222.  https://doi.org/10.1111/jam.13246 CrossRefPubMedGoogle Scholar
  41. Sinatra JA, Colby K (2018) Fatal Vibrio anguilarum infection in an immunocompromised patient-maine, 2017. Morbid Mortal Wkly Rpt 67(34):962–963CrossRefGoogle Scholar
  42. Snow J (1849) On the mode of communication of cholera. John Churchill, LondonGoogle Scholar
  43. Snow J (1854) On the mode of communication of cholera, 2nd edn. John Churchill, LondonGoogle Scholar
  44. Takemura AF, Chien DM, Polz MF (2014) Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Front Microbiol 5:38.  https://doi.org/10.3389/fmicb.2014.00038 CrossRefPubMedPubMedCentralGoogle Scholar
  45. van Lieverloo JH, Hoogenboezem W, Veenendaal G et al (2012) Variability of invertebrate abundance in drinking water distribution systems in the Netherlands in relation to biostability and sediment volumes. Water Res 46(16):4918–4932CrossRefGoogle Scholar
  46. Vezzulli L, Grande C, Reid PC et al (2016) Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc Natl Acad Sci USA 113(34):E5062–E5071.  https://doi.org/10.1073/pnas.1609157113/-/DCSupplemental CrossRefPubMedGoogle Scholar
  47. World Health Organization (2006) Oral rehydration salts production of the new ORS. WHO/FCH/CAH/06.1. World Health Organization, GenevaGoogle Scholar
  48. World Health Organization (2017) Cholera vaccines: WHO position paper – August 2017. Wkly Epidemiol Rec 92:477–500Google Scholar
  49. Zander CD, Groenewold S, Strohbach U (1994) Parasite transfer from crustacean to fish hosts in the Lübeck Bight, SW Baltic Sea. Helgol Meeresunters 48:89–105.  https://doi.org/10.1007/BF02366204 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christon J. Hurst
    • 1
    • 2
  1. 1.1814 Woodpine Lane, CincinnatiUSA
  2. 2.Universidad del ValleCaliColombia

Personalised recommendations