Advertisement

Is Privacy Controllable?

  • Yefim ShulmanEmail author
  • Joachim Meyer
Chapter
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 547)

Abstract

One of the major views of privacy associates privacy with the control over information. This gives rise to the question how controllable privacy actually is. In this paper, we adapt certain formal methods of control theory and investigate the implications of a control theoretic analysis of privacy. We look at how control and feedback mechanisms have been studied in the privacy literature. Relying on the control theoretic framework, we develop a simplistic conceptual control model of privacy, formulate privacy controllability issues and suggest directions for possible research.

Keywords

Privacy Feedback Information disclosure Human control Closed-loop control Feedback control 

Notes

Funding

This research is partially funded by the EU Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675730 “Privacy and Us”.

References

  1. 1.
    feedback | feed-back, n.: OED Online. Oxford University Press, July 2018. http://www.oed.com/view/Entry/68965
  2. 2.
    Acquisti, A., et al.: Nudges for privacy and security: understanding and assisting users’ choices online. ACM Comput. Surv. 50(3), 44:1–44:41 (2017).  https://doi.org/10.1145/3054926CrossRefGoogle Scholar
  3. 3.
    Angulo, J., Wästlund, E., Högberg, J.: What would it take for you to tell your secrets to a cloud? In: Bernsmed, K., Fischer-Hübner, S. (eds.) NordSec 2014. LNCS, vol. 8788, pp. 129–145. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11599-3_8CrossRefGoogle Scholar
  4. 4.
    Aström, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, Princeton (2010)CrossRefGoogle Scholar
  5. 5.
    Bargh, M.S., Meijer, R., Choenni, S., Conradie, P.: Privacy protection in data sharing: towards feedback based solutions. In: Proceedings of the 8th International Conference on Theory and Practice of Electronic Governance ICEGOV 2014, pp. 28–36. ACM, New York (2014).  https://doi.org/10.1145/2691195.2691279
  6. 6.
    Brandimarte, L., Acquisti, A., Loewenstein, G.: Misplaced confidences: privacy and the control paradox. Soc. Psychol. Pers. Sci. 4(3), 340–347 (2013).  https://doi.org/10.1177/1948550612455931CrossRefGoogle Scholar
  7. 7.
    Carey, T., Mansell, W., Tai, S.: A biopsychosocial model based on negative feedback and control. Front. Hum. Neurosci. 8, 94 (2014).  https://doi.org/10.3389/fnhum.2014.00094CrossRefGoogle Scholar
  8. 8.
    Carver, C.S.: Control processes, priority management, and affective dynamics. Emot. Rev. 7(4), 301–307 (2015).  https://doi.org/10.1177/1754073915590616CrossRefGoogle Scholar
  9. 9.
    Chanchary, F., Chiasson, S.: User perceptions of sharing, advertising, and tracking. In: Eleventh Symposium On Usable Privacy and Security (SOUPS) 2015, pp. 53–67. USENIX Association, Ottawa (2015). https://www.usenix.org/conference/soups2015/proceedings/presentation/chanchary
  10. 10.
    Colnago, J., Guardia, H.: How to inform privacy agents on preferred level of user control? In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: UbiComp Adjunct 2016, pp. 1542–1547. ACM, New York (2016).  https://doi.org/10.1145/2968219.2968546
  11. 11.
    Coppersmith, D., Mintzer, F.C., Tresser, C.P., Wu, C.W., Yeung, M.M.: Fragile imperceptible digital watermark with privacy control, vol. 3657, pp. 79–85 (1999).  https://doi.org/10.1117/12.344705
  12. 12.
    DeCew, J.: Privacy. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Spring 2018 edn. Metaphysics Research Lab, Stanford University (2018)Google Scholar
  13. 13.
    Dinev, T., Xu, H., Smith, J.H., Hart, P.: Information privacy and correlates: an empirical attempt to bridge and distinguish privacy-related concepts. Eur. J. Inf. Syst. 22(3), 295–316 (2013).  https://doi.org/10.1057/ejis.2012.23CrossRefGoogle Scholar
  14. 14.
    Doyle, J.C., Francis, B.A., Tannenbaum, A.R.: Feedback Control Theory. Courier Corporation (2013)Google Scholar
  15. 15.
    Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-79228-4_1CrossRefzbMATHGoogle Scholar
  16. 16.
    Fried, C.: An anatomy of values: problems of personal choice (1970)Google Scholar
  17. 17.
    Gong, Y., Wei, L., Guo, Y., Zhang, C., Fang, Y.: Optimal task recommendation for mobile crowdsourcing with privacy control. IEEE Internet Things J. 3(5), 745–756 (2016).  https://doi.org/10.1109/JIOT.2015.2512282CrossRefGoogle Scholar
  18. 18.
    Griffin, C., Rajtmajer, S., Squicciarini, A.: Invited paper: a model of paradoxical privacy behavior in online users. In: 2016 IEEE 2nd International Conference on Collaboration and Internet Computing (CIC), pp. 206–211, November 2016.  https://doi.org/10.1109/CIC.2016.037
  19. 19.
    Heersmink, R., van den Hoven, J., van Eck, N.J., van den Berg, J.: Bibliometric mapping of computer and information ethics. Ethics Inf. Technol. 13(3), 241 (2011).  https://doi.org/10.1007/s10676-011-9273-7CrossRefGoogle Scholar
  20. 20.
    Hoyle, R., Das, S., Kapadia, A., Lee, A.J., Vaniea, K.: Viewing the viewers: publishers’ desires and viewers’ privacy concerns in social networks. In: Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, CSCW 2017, pp. 555–566. ACM, New York (2017).  https://doi.org/10.1145/2998181.2998288
  21. 21.
    Jagacinski, R.J., Flach, J.M.: Control Theory for Humans: Quantitative Approaches To Modeling Performance. CRC Press, Boca Raton (2003)Google Scholar
  22. 22.
    Jiang, X., Landay, J.A.: Modeling privacy control in context-aware systems. IEEE Pervasive Comput. 1(3), 59–63 (2002).  https://doi.org/10.1109/MPRV.2002.1037723CrossRefGoogle Scholar
  23. 23.
    Jones, S., O’Neill, E.: Feasibility of structural network clustering for group-based privacy control in social networks. In: Proceedings of the Sixth Symposium on Usable Privacy and Security SOUPS 2010, pp. 9:1–9:13. ACM, New York (2010).  https://doi.org/10.1145/1837110.1837122
  24. 24.
    Kitkowska, A., Wästlund, E., Meyer, J., Martucci, L.A.: Is it harmful? Re-examining privacy concerns. In: Hansen, M., Kosta, E., Nai-Fovino, I., Fischer-Hübner, S. (eds.) Privacy and Identity 2017. IAICT, vol. 526, pp. 59–75. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-92925-5_5CrossRefGoogle Scholar
  25. 25.
    Knijnenburg, B.P., Kobsa, A.: Increasing sharing tendency without reducing satisfaction: finding the best privacy-settings user interface for social networks. In: ICIS (2014)Google Scholar
  26. 26.
    Kowalewski, S., Ziefle, M., Ziegeldorf, H., Wehrle, K.: Like us on facebook! analyzing user preferences regarding privacy settings in Germany. Proc. Manuf. 3, 815–822 (2015).  https://doi.org/10.1016/j.promfg.2015.07.336. http://www.sciencedirect.com/science/article/pii/S2351978915003376. 6th International Conference on Applied Human Factors and Ergonomics (AHFE 2015) and the Affiliated Conferences, AHFECrossRefGoogle Scholar
  27. 27.
    Krasnova, H., Spiekermann, S., Koroleva, K., Hildebrand, T.: Online social networks: why we disclose. J. Inf. Technol. 25(2), 109–125 (2010).  https://doi.org/10.1057/jit.2010.6CrossRefGoogle Scholar
  28. 28.
    Kupfer, J.: Privacy, autonomy, and self-concept. Am. Philos. Q. 24(1), 81–89 (1987). http://www.jstor.org/stable/20014176
  29. 29.
    Li, N., Li, T., Venkatasubramanian, S.: Closeness: a new privacy measure for data publishing. IEEE Trans. Knowl. Data Eng. 22(7), 943–956 (2010).  https://doi.org/10.1109/TKDE.2009.139CrossRefGoogle Scholar
  30. 30.
    Luenberger, D.G.: Introduction to Dynamic Systems: Theory, Models, and Applications, vol. 1. Wiley, New York (1979)zbMATHGoogle Scholar
  31. 31.
    Malhotra, N.K., Kim, S.S., Agarwal, J.: Internet users’ information privacy concerns (IUIPC): the construct, the scale, and a causal model. Info. Syst. Res. 15(4), 336–355 (2004).  https://doi.org/10.1287/isre.1040.0032CrossRefGoogle Scholar
  32. 32.
    Mansell, W., Marken, R.S.: The origins and future of control theory in psychology. Rev. Gen. Psychol. 19(4), 425–430 (2015)CrossRefGoogle Scholar
  33. 33.
    Mehta, V., Bandara, A.K., Price, B.A., Nuseibeh, B.: Privacy itch and scratch: on body privacy warnings and controls. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems CHI EA 2016, pp. 2417–2424. ACM, New York (2016).  https://doi.org/10.1145/2851581.2892475
  34. 34.
    Moore, A.: Defining privacy. J. Soc. Philos. 39(3), 411–428 (2008)CrossRefGoogle Scholar
  35. 35.
    Murmann, P., Fischer-Hbner, S.: Tools for achieving usable ex post transparency. a survey. IEEE Access 5, 22965–22991 (2017).  https://doi.org/10.1109/ACCESS.2017.2765539CrossRefGoogle Scholar
  36. 36.
    Parent, W.A.: Privacy, morality, and the law. Philos. Public Aff. 12(4), 269–288 (1983). http://www.jstor.org/stable/2265374
  37. 37.
    Patil, S., Hoyle, R., Schlegel, R., Kapadia, A., Lee, A.J.: Interrupt now or inform later?: Comparing immediate and delayed privacy feedback. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems CHI 2015, pp. 1415–1418. ACM (2015).  https://doi.org/10.1145/2702123.2702165
  38. 38.
    Patil, S., Schlegel, R., Kapadia, A., Lee, A.J.: Reflection or action?: How feedback and control affect location sharing decisions. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems CHI 2014, pp. 101–110. ACM, New York (2014).  https://doi.org/10.1145/2556288.2557121
  39. 39.
    Powers, W.T., Clark, R.K., McFarland, R.L.: A general feedback theory of human behavior: Part i. Percept. Mot. Skills 11(1), 71–88 (1960).  https://doi.org/10.2466/pms.1960.11.1.71CrossRefGoogle Scholar
  40. 40.
    Schaub, F., Balebako, R., Durity, A.L., Cranor, L.F.: A design space for effective privacy notices. In: Eleventh Symposium On Usable Privacy and Security SOUPS 2015, pp. 1–17. USENIX Association, Ottawa (2015). https://www.usenix.org/conference/soups2015/proceedings/presentation/schaub
  41. 41.
    Schlegel, R., Kapadia, A., Lee, A.J.: Eyeing your exposure: quantifying and controlling information sharing for improved privacy. In: Proceedings of the Seventh Symposium on Usable Privacy and Security, SOUPS 2011, pp. 14:1–14:14. ACM, New York (2011).  https://doi.org/10.1145/2078827.2078846
  42. 42.
    Sheridan, T.B., Ferrell, W.R.: Man-Machine Systems; Information, Control, and Decision Models of Human Performance. The MIT Press (1974)Google Scholar
  43. 43.
    Shulman, Y.: Towards a broadening of privacy decision-making models: the use of cognitive architectures. In: Hansen, M., Kosta, E., Nai-Fovino, I., Fischer-Hübner, S. (eds.) Privacy and Identity 2017. IAICT, vol. 526, pp. 187–204. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-92925-5_12CrossRefGoogle Scholar
  44. 44.
    Sivaraman, V., Gharakheili, H.H., Vishwanath, A., Boreli, R., Mehani, O.: Network-level security and privacy control for smart-home IoT devices. In: 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 163–167, October 2015.  https://doi.org/10.1109/WiMOB.2015.7347956
  45. 45.
    Smith, H.J., Dinev, T., Xu, H.: Information privacy research: an interdisciplinary review. MIS Q. 35(4), 989–1016 (2011). http://dl.acm.org/citation.cfm?id=2208940.2208950CrossRefGoogle Scholar
  46. 46.
    Solove, D.J.: A taxonomy of privacy. Univ. PA Law Rev. 154(3), 477–560 (2006)CrossRefGoogle Scholar
  47. 47.
    Toch, E., et al.: Locaccino: a privacy-centric location sharing application. In: Proceedings of the 12th ACM International Conference Adjunct Papers on Ubiquitous Computing - Adjunct, UbiComp 2010 Adjunct, pp. 381–382. ACM, New York, (2010).  https://doi.org/10.1145/1864431.1864446
  48. 48.
    Tsai, J.Y., Kelley, P., Drielsma, P., Cranor, L.F., Hong, J., Sadeh, N.: Who’s viewed you?: The impact of feedback in a mobile location-sharing application. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI 2009, pp. 2003–2012. ACM, New York (2009).  https://doi.org/10.1145/1518701.1519005
  49. 49.
    Tsai, L., et al.: Turtle guard: helping android users apply contextual privacy preferences. In: Thirteenth Symposium on Usable Privacy and Security (SOUPS 2017), pp. 145–162. USENIX Association, Santa Clara (2017). https://www.usenix.org/conference/soups2017/technical-sessions/presentation/tsai
  50. 50.
    Turow, J., Hennessy, M.: The tradeoff fallacy: how marketers are misrepresenting American consumers and opening them up to exploitation. SSRN Electron. J., 24 p. (2015).  https://doi.org/10.2139/ssrn.2820060
  51. 51.
    Vancouver, J.B., Weinhardt, J.M.: Modeling the mind and the milieu: computational modeling for micro-level organizational researchers. Organ. Res. Methods 15(4), 602–623 (2012).  https://doi.org/10.1177/1094428112449655CrossRefGoogle Scholar
  52. 52.
    Warren, S.D., Brandeis, L.D.: The right to privacy, pp. 193–220. Harvard law review (1890)CrossRefGoogle Scholar
  53. 53.
    Westin, A.: Privacy and Freedom. Atheneum, New York (1967)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Tel Aviv UniversityTel AvivIsrael

Personalised recommendations