Advertisement

Endophytic Microbial Communities of Boswellia

  • Ahmed Al-Harrasi
  • Abdul Latif Khan
  • Sajjad Asaf
  • Ahmed Al-Rawahi
Chapter

Abstract

Endophytes (bacteria or fungi) are a major class of plant symbionts that live within their hosts. These endosymbionts provide a diverse hub of bioactive secondary metabolites, phytohormones, extracellular enzymes and essential nutrients. In return, the host provides a protective habitat and access to the nutrients needed to reproduce and grow during the endophyte’s life (through the seeds, roots, stems and leaves). Similar to other plants, the Boswellia species have also been found to harbour endophytic microbes. Various species such as endophytic fungi (Chaetomium sp., Preussia sp., Penicillium, Thielavia, Phoma sp., Aureobasidium sp., Dothideomycetes sp., Sordariomycetes sp. and Fusarium proliferatum) and bacteria (Bacillus, Rhizobium and Paenibacillus) have been reported to date. Some of these species have been reported to produce auxin, exozymes and secondary enzyme inhibitory metabolites. There are only a few studies on these subjects, and they are primarily on B. sacra, and thus further study on other economically important species such as B. papyrifera and B. serrata is needed. This future work will help researchers to not only understand the role of associated microorganisms but also understand the tree of life and evolution.

Keywords

Endophytes Microbes Symbiotic association Exozymes Inoculation Auxin Gibberellin 

References

  1. Ali, S., Charles, T., & Glick, B. (2012). Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. Journal of Applied Microbiology, 113(5), 1139–1144.PubMedCrossRefGoogle Scholar
  2. Al-Hosni, K., Shahzad, R., Latif Khan, A., Muhammad Imran, Q., Al Harrasi, A., Al Rawahi, A., ... & Lee, I. J. (2018). Preussia sp. BSL-10 producing nitric oxide, gibberellins, and indole acetic acid and improving rice plant growth. Journal of Plant Interactions, 13(1), 112–118.Google Scholar
  3. Arenal, F., Platas, G., & Pelaez, F. (2007). A new endophytic species of Preussia (Sporormiaceae) inferred from morphological observations and molecular phylogenetic analysis. Fungal Diversity, 25, 1–17.Google Scholar
  4. Arnold, A. E., Henk, D. A., Eells, R. L., Lutzoni, F., & Vilgalys, R. (2007). Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia, 99(2), 185–206.PubMedCrossRefGoogle Scholar
  5. Arnold, A. E., & Lutzoni, F. (2007). Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology, 88(3), 541–549.PubMedCrossRefGoogle Scholar
  6. Bayman, P., & Otero, J. T. (2006). Microbial endophytes of orchid roots. In Microbial root endophytes (pp. 153–177). Berlin, Germany: Springer.CrossRefGoogle Scholar
  7. Bilal, S., Shahzad, R., Khan, A. L., Kang, S.-M., Imran, Q. M., Al-Harrasi, A., … Lee, I.-J. (2018). Endophytic microbial consortia of phytohormones-producing fungus Paecilomyces formosus LHL10 and bacteria Sphingomonas sp. LK11 to Glycine max L. regulates physio-hormonal changes to attenuate aluminum and zinc stresses. Frontiers in plant science, 9, 1273.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bömke, C., & Tudzynski, B. (2009). Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry, 70(15–16), 1876–1893.PubMedCrossRefGoogle Scholar
  9. Clay, K. (1990). Fungal endophytes of grasses. Annual Review of Ecology and Systematics, 21(1), 275–297.CrossRefGoogle Scholar
  10. Corrêa, R. C. G., Rhoden, S. A., Mota, T. R., Azevedo, J. L., Pamphile, J. A., de Souza, C. G. M., … Peralta, R. M. (2014). Endophytic fungi: Expanding the arsenal of industrial enzyme producers. Journal of Industrial Microbiology & Biotechnology, 41(10), 1467–1478.CrossRefGoogle Scholar
  11. De Bary, A. (1879). The phenomenon of symbiosis. Ver-lag Von Karl J. Trubner, Strasbourg, Germany.Google Scholar
  12. De Battista, J., Bacon, C., Severson, R., Plattner, R., & Bouton, J. (1990). Indole acetic acid production by the fungal endophyte of tall fescue. Agronomy Journal, 82(5), 878–880.CrossRefGoogle Scholar
  13. Deshpande, V., Wang, Q., Greenfield, P., Charleston, M., Porras-Alfaro, A., Kuske, C. R., … Tran-Dinh, N. (2016). Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia, 108(1), 1–5.PubMedCrossRefGoogle Scholar
  14. Dew, R., Boissonneault, G., Gay, N., Boling, J., Cross, R., & Cohen, D. (1990). The effect of the endophyte (Acremonium coenophialum) and associated toxin (s) of tall fescue on serum titer response to immunization and spleen cell flow cytometry analysis and response to mitogens. Veterinary Immunology and Immunopathology, 26(3), 285–295.PubMedCrossRefGoogle Scholar
  15. Eberl, F., Uhe, C., & Unsicker, S. B. (2019). “Friend or foe? The role of leaf-inhabiting fungal pathogens and endophytes in tree-insect interactions.” Fungal Ecology 38, 104–112.Google Scholar
  16. El-Nagerabi, S. A., Elshafie, A. E., & Alkhanjari, S. S. (2014). Endophytic fungi associated with endogenous Boswellia sacra. Biodiversitas Journal of Biological Diversity, 15(1), 24–30.CrossRefGoogle Scholar
  17. Eslamieh, J. (2010). Creating “Perfect” Boswellia. Cactus and Succulent Journal, 82(3), 126–131.CrossRefGoogle Scholar
  18. Esteves, A. C., Saraiva, M., Correia, A., & Alves, A. (2014). Botryosphaeriales fungi produce extracellular enzymes with biotechnological potential. Canadian Journal of Microbiology, 60(5), 332–342.PubMedCrossRefGoogle Scholar
  19. Fouda, A. H., Hassan, S. E.-D., Eid, A. M., & Ewais, E. E.-D. (2015). Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Annals of Agricultural Sciences, 60(1), 95–104.CrossRefGoogle Scholar
  20. Fröhlich, J., & Hyde, K. D. (1999). Biodiversity of palm fungi in the tropics: Are global fungal diversity estimates realistic? Biodiversity and Conservation, 8(7), 977–1004.CrossRefGoogle Scholar
  21. Fulthorpe, R., MacIvor, J. S., Jia, P., & Yasui, S.-L. E. (2018). The green roof microbiome: Improving plant survival for ecosystem service delivery. Frontiers in Ecology and Evolution, 6, 5.CrossRefGoogle Scholar
  22. Ganley, R. J., Brunsfeld, S. J., & Newcombe, G. (2004). A community of unknown, endophytic fungi in western white pine. Proceedings of the National Academy of Sciences, 101(27), 10107–10112.CrossRefGoogle Scholar
  23. García, A., Rhoden, S. A., Rubin Filho, C. J., Nakamura, C. V., & Pamphile, J. A. (2012). Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biological Research, 45(2), 139–148.PubMedCrossRefGoogle Scholar
  24. Ghimire, S. R., Charlton, N. D., Bell, J. D., Krishnamurthy, Y. L., & Craven, K. D. (2011). Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L.) growing in the native tallgrass prairie of northern Oklahoma. Fungal Diversity, 47(1), 19–27.CrossRefGoogle Scholar
  25. Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 1.CrossRefGoogle Scholar
  26. Göhre, V., & Robatzek, S. (2008). Breaking the barriers: Microbial effector molecules subvert plant immunity. Annual Review of Phytopathology, 46, 189–215.PubMedCrossRefGoogle Scholar
  27. Gunatilaka, A. L. (2006). Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity, and implications of their occurrence. Journal of Natural Products, 69(3), 509–526.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Halo, B. A., Khan, A. L., Waqas, M., Al-Harrasi, A., Hussain, J., Ali, L., … Lee, I.-J. (2015). Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. Journal of Plant Interactions, 10(1), 117–125.CrossRefGoogle Scholar
  29. Hawksworth, D. L., & Rossman, A. Y. (1997). Where are all the undescribed fungi? Phytopathology, 87(9), 888–891.PubMedCrossRefGoogle Scholar
  30. Hibbett, D. S., Ohman, A., Glotzer, D., Nuhn, M., Kirk, P., & Nilsson, R. H. (2011). Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biology Reviews, 25(1), 38–47.CrossRefGoogle Scholar
  31. Higgins, K. L., Arnold, A. E., Miadlikowska, J., Sarvate, S. D., & Lutzoni, F. (2007). Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Molecular Phylogenetics and Evolution, 42(2), 543–555.PubMedCrossRefGoogle Scholar
  32. Huang, W., Cai, Y., Surveswaran, S., Hyde, K., Corke, H., & Sun, M. (2009). Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal diversity, 36, 69–88.Google Scholar
  33. Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. Journal of Clinical Microbiology, 45(9), 2761–2764.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Khan, A. L., Al-Harrasi, A., Al-Rawahi, A., Al-Farsi, Z., Al-Mamari, A., Waqas, M., … Shin, J.-H. (2016). Endophytic fungi from Frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One, 11(6), e0158207.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Khan, A. L., Al-Harrasi, A., Shahzad, R., Imran, Q. M., Yun, B.-W., Kim, Y.-H., … Lee, I.-J. (2018). Regulation of endogenous phytohormones and essential metabolites in frankincense-producing Boswellia sacra under wounding stress. Acta Physiologiae Plantarum, 40(6), 113.CrossRefGoogle Scholar
  36. Khan, A. L., Asaf, S., Al-Rawahi, A., Lee, I.-J., & Al-Harrasi, A. (2017). Rhizospheric microbial communities associated with wild and cultivated frankincense producing Boswellia sacra tree. PLoS One, 12(10), e0186939.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Khan, A. L., Asaf, S., Khan, A. R., Al-Harrasi, A., Al-Rawahi, A., & Lee, I.-J. (2016). First draft genome sequencing of indole acetic acid producing and plant growth promoting fungus Preussia sp. BSL10. Journal of Biotechnology, 225, 44–45.PubMedCrossRefGoogle Scholar
  38. Khan, A. L., Halo, B. A., Elyassi, A., Ali, S., Al-Hosni, K., Hussain, J., … Lee, I.-J. (2016). Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electronic Journal of Biotechnology, 21, 58–64.CrossRefGoogle Scholar
  39. Khan, A. L., Hamayun, M., Kang, S.-M., Kim, Y.-H., Jung, H.-Y., Lee, J.-H., & Lee, I.-J. (2012). Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: An example of Paecilomyces formosus LHL10. BMC Microbiology, 12(1), 3.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Khan, A. L., Hussain, J., Al-Harrasi, A., Al-Rawahi, A., & Lee, I.-J. (2015). Endophytic fungi: Resource for gibberellins and crop abiotic stress resistance. Critical Reviews in Biotechnology, 35(1), 62–74.PubMedCrossRefGoogle Scholar
  41. Khan, A. L., & Lee, I.-J. (2013). Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol, 13(1), 86.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Khan, A. L., Shin, J.-H., Jung, H.-Y., & Lee, I.-J. (2014). Regulations of capsaicin synthesis in Capsicum annuum L. by Penicillium resedanum LK6 during drought conditions. Scientia Horticulturae, 175, 167–173.CrossRefGoogle Scholar
  43. Khan, A. L., Waqas, M., Asaf, S., Kamran, M., Shahzad, R., Bilal, S., … Yun, B.-W. (2017). Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environmental and Experimental Botany, 133, 58–69.CrossRefGoogle Scholar
  44. Khan, A. L., Waqas, M., Hamayun, M., Al-Harrasi, A., Al-Rawahi, A., & Lee, I.-J. (2013). Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation. BMC Microbiology, 13(1), 51.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Khan, A. L., Waqas, M., Hussain, J., Al-Harrasi, A., Hamayun, M., & Lee, I.-J. (2015). Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: An examples of Penicillium janthinellum LK5 and comparison with exogenous GA3. Journal of Hazardous Materials, 295, 70–78.PubMedCrossRefGoogle Scholar
  46. Khan, S. A., Hamayun, M., Yoon, H., Kim, H.-Y., Suh, S.-J., Hwang, S.-K., … Yoon, U.-H. (2008). Plant growth promotion and Penicillium citrinum. BMC Microbiology, 8(1), 231.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kharwar, R. N., Mishra, A., Gond, S. K., Stierle, A., & Stierle, D. (2011). Anticancer compounds derived from fungal endophytes: Their importance and future challenges. Natural Product Reports, 28(7), 1208–1228.PubMedCrossRefGoogle Scholar
  48. Kim, Y., Seo, C. W., Khan, A. L., Mun, B. G., Shahzad, R., Ko, J. W., ... & Lee, I. J. (2018). Exo-ethylene application mitigates waterlogging stress in soybean (Glycine max L.). BMC plant biology, 18(1), 254–270.Google Scholar
  49. Krings, M., Taylor, T. N., Hass, H., Kerp, H., Dotzler, N., & Hermsen, E. J. (2007). Fungal endophytes in a 400-million-yr-old land plant: Infection pathways, spatial distribution, and host responses. New Phytologist, 174(3), 648–657.PubMedCrossRefGoogle Scholar
  50. Kuldau, G., & Bacon, C. (2008). Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses. Biological Control, 46(1), 57–71.CrossRefGoogle Scholar
  51. Kumar, D. S. S., & Hyde, K. D. (2004). Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal diversity, 17, 69–90.Google Scholar
  52. Kusari, S., Hertweck, C., & Spiteller, M. (2012). Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chemistry & Biology, 19(7), 792–798.CrossRefGoogle Scholar
  53. Kusari & Spiteller (2012). Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities U. Roessner (Ed.), Metabolomics, InTech, Rijeka, Croatia, pp. 241–266.Google Scholar
  54. Kusari, S., Zühlke, S., & Spiteller, M. (2009). An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. Journal of Natural Products, 72(1), 2–7.PubMedCrossRefGoogle Scholar
  55. Lewis, D. H. (1985). Symbiosis and mutualism: crisp concepts and soggy semantics. In: Boucher, D. H., (ed). The biology of mutualism. London, UK: Croom Helm Ltd, 29–39.Google Scholar
  56. Limtong, S., Kaewwichian, R., Yongmanitchai, W., & Kawasaki, H. (2014). Diversity of culturable yeasts in phylloplane of sugarcane in Thailand and their capability to produce indole-3-acetic acid. World Journal of Microbiology and Biotechnology, 30(6), 1785–1796.PubMedCrossRefGoogle Scholar
  57. Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the phyllosphere. Applied and Environmental Microbiology, 69(4), 1875–1883.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Liu, X., Dong, M., Chen, X., Jiang, M., Lv, X., & Yan, G. (2007). Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chemistry, 105(2), 548–554.CrossRefGoogle Scholar
  59. Lodge, D. J., Fisher, P., & Sutton, B. (1996). Endophytic fungi of Manilkara bidentata leaves in Puerto Rico. Mycologia, 88, 733–738.CrossRefGoogle Scholar
  60. Maheshwari, R. (2006). What is an endophytic fungus. Current Science, 90(10), 1309.Google Scholar
  61. Müller, C. B., & Krauss, J. (2005). Symbiosis between grasses and asexual fungal endophytes. Current Opinion in Plant Biology, 8(4), 450–456.PubMedCrossRefGoogle Scholar
  62. Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N., & Larsson, K.-H. (2008). Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and ITS implications for molecular species identification. Evolutionary Bioinformatics Online, 4, S653.CrossRefGoogle Scholar
  63. Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., … Ahmed, A.-H. (2018). Plant growth promoting Bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research, 209, 21.PubMedCrossRefGoogle Scholar
  64. Patel, J. B. (2001). 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Molecular Diagnosis, 6(4), 313–321.PubMedCrossRefGoogle Scholar
  65. Petrini, O., Sieber, T. N., Toti, L., & Viret, O. (1993). Ecology, metabolite production, and substrate utilization in endophytic fungi. Natural Toxins, 1(3), 185–196.CrossRefGoogle Scholar
  66. Pirozynski, K., & Malloch, D. (1975). The origin of land plants: A matter of mycotrophism. Biosystems, 6(3), 153–164.PubMedCrossRefGoogle Scholar
  67. Porras-Alfaro, A., Herrera, J., Sinsabaugh, R. L., Odenbach, K. J., Lowrey, T., & Natvig, D. O. (2008). Novel root fungal consortium associated with a dominant desert grass. Applied and Environmental Microbiology, 74(9), 2805–2813.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Raja, H. A., Miller, A. N., Pearce, C. J., & Oberlies, N. H. (2017). Fungal identification using molecular tools: A primer for the natural products research community. Journal of Natural Products, 80(3), 756–770.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Redecker, D., Kodner, R., & Graham, L. E. (2000). Glomalean fungi from the Ordovician. Science, 289(5486), 1920–1921.PubMedCrossRefGoogle Scholar
  70. Robert-Seilaniantz, A., Navarro, L., Bari, R., & Jones, J. D. (2007). Pathological hormone imbalances. Current Opinion in Plant Biology, 10(4), 372–379.PubMedCrossRefGoogle Scholar
  71. Rodriguez, R. J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., … Redman, R. S. (2008). Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal, 2(4), 404.PubMedCrossRefGoogle Scholar
  72. Rosconi, F., Davyt, D., Martínez, V., Martínez, M., Abin-Carriquiry, J. A., Zane, H., … Fabiano, E. (2013). Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte H erbaspirillum seropedicae. Environmental Microbiology, 15(3), 916–927.PubMedCrossRefGoogle Scholar
  73. Rowan, D. D., Latch, G. C., Bacon, C., & White, J. (1994). Utilization of endophyte-infected perennial ryegrasses for increased insect resistance. In Biotechnology of endophytic fungi of grasses (pp. 169–183). Boca Raton, London/New York: CRC Press.Google Scholar
  74. Rozpądek, P., Wężowicz, K., Nosek, M., Ważny, R., Tokarz, K., Lembicz, M., … Turnau, K. (2015). The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta, 242(4), 1025–1035.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Sabat, A. J., Zanten, E., Akkerboom, V., Wisselink, G., Slochteren, K., Boer, R. F., … Kooistra-Smid, A. M. M. (2017). Targeted next-generation sequencing of the 16S-23S rRNA region for culture-independent bacterial identification-increased discrimination of closely related species. Scientific Reports, 7(1), 3434.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Saikkonen, K., Wäli, P., Helander, M., & Faeth, S. H. (2004). Evolution of endophyte–plant symbioses. Trends in Plant Science, 9(6), 275–280.PubMedCrossRefGoogle Scholar
  77. Sakayaroj, J., Preedanon, S., Supaphon, O., Jones, E. G., & Phongpaichit, S. (2010). Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Diversity, 42(1), 27–45.CrossRefGoogle Scholar
  78. Santamaría, J., & Bayman, P. (2005). Fungal epiphytes and endophytes of coffee leaves (Coffea arabica). Microbial Ecology, 50(1), 1–8.PubMedCrossRefGoogle Scholar
  79. Sapp, J. (2004). The dynamics of symbiosis: An historical overview. Canadian Journal of Botany, 82(8), 1046–1056.CrossRefGoogle Scholar
  80. Schulz, B., & Boyle, C. (2005). The endophytic continuum. Mycological Research, 109(6), 661–686.PubMedCrossRefGoogle Scholar
  81. Sessitsch, A., Hardoim, P., Döring, J., Weilharter, A., Krause, A., Woyke, T., … Rahalkar, M. (2012). Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Molecular Plant-Microbe Interactions, 25(1), 28–36.PubMedCrossRefGoogle Scholar
  82. Shahzad, R., Waqas, M., Khan, A. L., Asaf, S., Khan, M. A., Kang, S.-M., … Lee, I.-J. (2016). Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiology and Biochemistry, 106, 236–243.PubMedCrossRefGoogle Scholar
  83. Soussi, A., Ferjani, R., Marasco, R., Guesmi, A., Cherif, H., Rolli, E., … Cherif, A. (2016). Plant-associated microbiomes in arid lands: Diversity, ecology and biotechnological potential. Plant and Soil, 405(1–2), 357–370.CrossRefGoogle Scholar
  84. Stierle, A., Strobel, G., & Stierle, D. (1993). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 260(5105), 214–216.PubMedCrossRefGoogle Scholar
  85. Stone, J. K., Bacon, C. W., & White, J. F. (2000). An overview of endophytic mibrobes: Endophytism defined. In: Microbial Endophytes. Bacon, C. W., & White, J. F. (eds.). Marcel Dekker, New York, p. 3–30.Google Scholar
  86. Strobel, G. A. (2003). Endophytes as sources of bioactive products. Microbes and Infection, 5(6), 535–544.PubMedCrossRefGoogle Scholar
  87. Sun, P.-F., Fang, W.-T., Shin, L.-Y., Wei, J.-Y., Fu, S.-F., & Chou, J.-Y. (2014). Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PLoS One, 9(12), e114196.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Sun, Y., Wang, Q., Lu, X., Okane, I., & Kakishima, M. (2011). Endophytic fungi associated with two Suaeda species growing in alkaline soil in China. Mycosphere, 2(3), 239–248.Google Scholar
  89. Sunitha, V., Nirmala Devi, D., & Srinivas, C. (2013). Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World Journal of Agricultural Sciences, 9(1), 1–9.Google Scholar
  90. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Tolera, M., Sass-Klaassen, U., Eshete, A., Bongers, F., & Sterck, F. J. (2013). Frankincense tree recruitment failed over the past half century. Forest Ecology and Management, 304, 65–72.CrossRefGoogle Scholar
  92. Tsavkelova, E., Oeser, B., Oren-Young, L., Israeli, M., Sasson, Y., Tudzynski, B., & Sharon, A. (2012). Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genetics and Biology, 49(1), 48–57.PubMedCrossRefGoogle Scholar
  93. Van Der Heijden, M. G., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11(3), 296–310.PubMedCrossRefGoogle Scholar
  94. Voříšková, J., & Baldrian, P. (2013). Fungal community on decomposing leaf litter undergoes rapid successional changes. The ISME Journal, 7(3), 477.PubMedCrossRefGoogle Scholar
  95. Wennstrom, A. (1994). Endophyte: the misuse of an old term. Oikos, 71, 535–536.CrossRefGoogle Scholar
  96. White, J. F., Jr., & Torres, M. S. (2010). Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiologia Plantarum, 138(4), 440–446.PubMedCrossRefGoogle Scholar
  97. Wilson, T. M. (1993). Strategies to protect crop plants against viruses: Pathogen-derived resistance blossoms. Proceedings of the National Academy of Sciences, 90(8), 3134–3141.CrossRefGoogle Scholar
  98. Wingender, G., Stepniak, D., Krebs, P., Lin, L., McBride, S., Wei, B., … Kronenberg, M. (2012). Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology, 143(2), 418–428.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Woo, P., Lau, S., Teng, J., Tse, H., & Yuen, K.-Y. (2008). Then and now: Use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clinical Microbiology and Infection, 14(10), 908–934.PubMedCrossRefGoogle Scholar
  100. Xu, M., Sheng, J., Chen, L., Men, Y., Gan, L., Guo, S., & Shen, L. (2014). Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World Journal of Microbiology and Biotechnology, 30(3), 835–845.PubMedCrossRefGoogle Scholar
  101. Yan, J., Broughton, S., Yang, S., & Gange, A. (2015). Do endophytic fungi grow through their hosts systemically? Fungal Ecology, 13, 53–59.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ahmed Al-Harrasi
    • 1
  • Abdul Latif Khan
    • 1
  • Sajjad Asaf
    • 1
  • Ahmed Al-Rawahi
    • 1
  1. 1.University of NizwaNizwaOman

Personalised recommendations